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Abstract

To describe the dynamics of fast-slow systems near singularities, the continuation of the slow manifold beyond singularities is of particular interest. For the generic fold singularity, a result similar
to the one obtained in the case of the continuous-time ODE system can be established for the discrete dynamical system, that arises out of the continuous one by a one-step method. Based on
a graph transform method, the existence of a negatively invariant, attractive manifold is shown. It is piecewise given as a graph and in coordinates relative to the extension of the slow manifold.

Fast-Slow Systems

A system of ordinary differential equations is called a fast-slow system if it has one of the
following structures, which can be transformed into each other by the change of time τ = εt.

x′ =
dx

dτ
= f (x, y, ε)

εy′ = ε
dy

dτ
= g(x, y, ε)

(1)
ẋ =

dx

dt
= εf (x, y, ε)

ẏ =
dy

dt
= g(x, y, ε)

(2)

Here the small parameter 0 < ε � 1 constitutes the ratio between the two time scales.
We have (x, y) ∈ Rm × Rn, the variable x is called the slow variable, y the fast variable.

Setting ε = 0 in (1) and (2) we obtain

x′ = f (x, y, 0)

0 = g(x, y, 0)
(3)

ẋ = 0

ẏ = g(x, y, 0)
(4)

This limit case is also called singular limit as (3) is not a system of ODEs anymore, but a
differential algebraic equation. The so-called slow flow or reduced flow of (3) is restricted
to the set C0 := {(x, y) ∈ Rm×Rn | g(x, y, 0) = 0}, which we refer to as the critical set,
or if it is a manifold, as the critical manifold.
Since ẋ = 0, equations (4) can be seen as a dynamical system parametrized by the
constant x. The set C0 corresponds to the equilibria of (4).

Fenichel’s Theorem and Singularities

A subset S ⊂ C0 is called normally hyperbolic if the matrix (Dyg)(p, 0) has no eigenvalue
with zero real part for all p ∈ S. The following theorem is an important tool to investigate
the dynamics of the full system for ε > 0 in the vicinity of normally hyperbolic parts S ⊂ C0.

Fenichel’s Theorem
Suppose S0 is a compact, normally hyperbolic submanifold (possibly with boundary) of the
critical manifold C0 of (1). Assume further that f, g ∈ Cr, (r < ∞). Then for ε > 0
sufficiently small there exists a locally invariant manifold Sε diffeomorphic to S0, which is
called a slow manifold. Sε has Hausdorff distance O(ε) from S0 and is Cr smooth. The
flow on Sε converges to the slow flow as ε→ 0, Sε is normally hyperbolic and has the same
stability properties as S0. Usually Sε is not unique but all manifolds satisfying the above lie
at a Hausdorff distance O(e−K/ε) from each other for some K > 0, K = O(1).

This result is only applicable as long as the considered parts of the critical manifold are
normally hyperbolic. Points where this property is lost are called singularities. A loss of
normal hyperbolicity corresponds to a bifurcation of the parametrized equations (4).

The Blowup Technique

A method to gain insight into the dynamics around a non-hyperbolic equilibrium points, that
also finds great application in the analysis of singularities, is the blowup technique.

Let I ⊆ R be an interval containing 0 and consider the map φ : Sn−1 × I → Rn

φ(z̄1, . . . z̄n, r) = (ra1z̄1, . . . , r
anz̄n) for (z̄1, . . . z̄n) ∈ Sn−1, i.e.

∑n
k=1 z̄

2
k = 1

The quasihomogeneous blowup F̂ of a vector field F : Rn→ Rn with an equilibrium point
at the origin is now defined by F̂ = Dφ−1 ◦ F ◦ φ. The exponents a1, a2, . . . , an ∈ N
are chosen depending on the quasihomogenicity of the underlying vector field F . The set
Sn−1 × {0} gets mapped onto the origin, i.e. the equilibrium is “blown up” to a sphere.

In general the blowup transform does not yet give any improvement, as there is no motion
on the sphere. Under appropriate conditions we can further desingularize by scaling F̂ and
obtain the rescaled vector field F̄ = 1

rkF̂ , that allows to draw conclusions for the dynamics
of the original, blown down system.

To simplify the calculations, we use suitable charts κi of the manifold Sn−1×I and describe
the blowup by a coordinate transformation µi on the Euclidean space Rn, i.e. φ = κi ◦ µi.

Blowup of the vector field F (x, y) = (x2 − 2xy, y2 − 2xy) , which has a non-hyperbolic equilibrium at (0, 0) with a1 = a2 = 1

The Fold Singularity

We consider the following fast-slow formulation of the van der Pol equation

ẋ = ε3 (1 + y) =: ε3f (x, y)

ẏ = −x− y2 − y3

3 =: g(x, y)
(5)

The critical manifold C0 = {x = −y2 − y3

3 } of (5) is a cubic curve. We calculate
Dyg(x, y) = −2y − y2 = −y(y + 2) so that C0 is normally hyperbolic for y /∈ {−2, 0}
and moreover attractive for y ∈ R \ [0, 2]. Apart from that we find a fold singularity
(corresponding to the fold / saddle-node bifurcation) at the origin (as well as at the point
(x, y) = (−4

3,−2)). The upper, normally hyperbolic branch G+ of the critical manifold can
be described as the graph of a function s+

0 : (−∞, 0)→ R. Away from the origin Fenichel’s
theorem yields a negatively invariant, attractive slow manifold Sε close to G+, which is given
as graph of some function s1.

Near the origin we have ẋ > 0, so that the reduced flow is directed towards the singularity.
It was shown that the extension of the slow manifold under the flow of (5) passes the fold
point and then follows approximately a fast fiber in a distance of O(ε2) to the negative
y-axis. The quasihomogeneous blow up used to study the fold singularity has the form

x = r2x̄ y = rȳ ε = rε̄ for (x̄, ȳ, z̄, r) ∈ S2 × [0, R]

The Result in Discrete Time

We transfer the result of the continuous-time case into discrete time. Therefor we consider
an iteration of the map P : R4 → R4, that describes a one-step method with step size h.

P :


x
y
ε
h

 7→

x̄
ȳ
ε̄
h̄

 =


x + hε3f (x, y) + h2ε3f̂ (x, y, ε, h)
y + hg(x, y) + h2ĝ(x, y, ε, h)

ε
h

 (6)

We suppose that this one-step method can be expressed by a Butcher series. This holds
true for example for Runge-Kutta-methods or the explicit Euler method.

Main Result
There are δ0, ν0 > 0 such that for every (ε, h) ∈ (0, δ0] × (0, ν0] the map P admits an
attractive, negatively invariant curve. The union of theses curves form a 3-dimensional
attractive, negatively invariant manifold M. The manifold M is described relatively to a
reference manifold M r – the slow manifold Sε and its extension under the flow of (5) – which
is negatively invariant and piecewise in charts Φ1, . . . ,Φ6 defined as graph of smooth func-
tions s1, . . . , s6. The manifoldM is piecewise described as the graph of Lipschitz continuous
functions σ1, . . . σ6, more precisely as Mi = {(x, y)| x ∈ Xi, y = si(x, ε) + σi(x, ε, h)}
for i = 1, 2, 3 and Mi = {(x, y)| y ∈ Yi, x = si(y, ε) + σi(y, ε, h)} for i = 4, 5, 6
for certain intervals Xi and Yi.
The functions σ1, . . . σ6 satisfy σi = O(ε3h) for i = 1, 4 and σi = O(ε2h) for i = 2, 3, 5, 6.

Graph Transform

The proof of the main result uses the method of graph transform. A manifold M given
in several charts Φi : R4 → Ui × Vi can be described as an element of the function space
Σ = {σ = (σ1, . . . , σ6) | σi ∈ Ci(Ui, Vi)}. Applying the map P to M gives a set P (M),
under appropriate assumptions and under an appropriate choice of the spaces Ci(Ui, Vi)
there is a set M∗ ⊂ P (M) which is again described by an element σ∗ ∈ Σ. Thereby the
mapping P induces an operator F : Σ→ Σ. For the proof we have to assure that the map
P flows from one chart to the next one and show that F is a contraction.
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