
LATEX TikZposter

A discrete quantum Drift-Diffusion model
Prof. Dr. Daniel Matthes, Eva-Maria Rott

Chair of Dynamical Systems

A discrete quantum Drift-Diffusion model
Prof. Dr. Daniel Matthes, Eva-Maria Rott

Chair of Dynamical Systems

Over the last few decades electronic devices, as for example semiconductors, were downsized until reaching magnitudes in the nano-meter regime. This is where classical equations start to fail
giving good descriptions for the behaviour of quantum particles and quantum effects need to be taken into account.

Density-matrix formalism of
quantum mechanics

In quantum mechanics the state of a particle at time t and
place x ∈ RD is described by its wave vector ψ(t, x) ∈ C
with ψ(t, ·) ∈ L2(RD,C). If the state is subject to a
given potential V (t, x), then the Hamiltonian H, which
operates on ψ as follows:

Hψ = −~
2

2
∆ψ + V ψ (1)

corresponds to the total energy of the system, and a state
ψ evolves according to the Schrödinger equation

i~∂tψ = Hψ. (2)

A mixed state is then modelled by a trace-class, positive
and hermitian operator ρt : L2(RD,C)→ L2(RD,C), the
so called density operator.

The modified quantum
Liuoville equation

The density operator ρ then fulfills the
quantum Liouville Equation

∂tρ = − i
~

[H, ρ], (3)

where [H, ρ] = Hρ−ρH denotes the com-
mutator of H and ρ. To moreover in-
clude the interaction between particles and
themselves as well as their environment one
adds a collision operator Q. Finally we
gain the modified Quantum Liouville
Equation:

∂tρ = − i
~

[H, ρ] +Q(ρ). (4)

Choice of the collision operator

To carry out a diffusion approximation we postulate properties for the collision operator, like e.g.:
•Decay of a quantum entropy

A convenient entropy concept in the description of quantum systems in a thermal bath of fixed background
temperature 1/β is defined by the relative quantum entropy

H̃cont(ρ) = Tr {ρ(log ρ− 1 + βH)} .

• Local conservation of the density
Hereby the density n at a point x is given by

¯
ρ(x, x) where

¯
ρ denotes the integral kernel associated to ρ.

Since it gets to complex to model each particle collision if they are very frequent, it is common to choose a very
simple form for Q, the Bhatnagar–Gross–Krook (BGK) operator:

Q(ρ) =Mρ − ρ (5)

where the quantum MaxwellianMρ is defined as

Mρ = min{H̃cont(ρ̃)
∣∣
¯
ρ(x, x) =

¯
ρ̃(x, x) ∀x ∈ RD}.

Expansion in
powers of ~

The semiclassical limit ~ → 0
leads to the classical Drift-Diffusion
equation. To get an better insight
on how the quantum effects affect
the classical part in the QDD model
we further derive a leading order
correction to the classical equation,
i.e. an expansion of the QDD
model up to order ~2 while passing
to the limit δ → 0.

Theorem. In the limit δ → 0, af-
ter expanding the discrete quantum
Maxwellian, the first order correc-
tion of the QDD in powers of ~2,
called Gradient-Density model,
is given by

∂tn =
1

β
∆n +∇ · (n∇(V + VB[n]))

+O(~4)

with the so called Bohm-potential

VB[n] = −~
2

6
∇
(

∆
√
n√
n

)
.

Recovery of the continuous QDD

Theorem. In the limit δ → 0 we recover the continuous quan-
tum Drift-Diffusion equation

∂tn = ∇ ·
(
n∇

(
V +

A

β

))
(6)

from the DQDD model.

Idea of the proof :
With y as fixed element of the mesh we can look at the following
system of ODEs

∂tG
t(x, y) = A(x)Gt(x, y) +

~2β

2δ2
(Gt(x + δ, y)

+ Gt(x− δ, y)− 2Gt(x, y))

G0(x, y) = δxy.

which yields another representation of the quantum Maxwellian:

Mkl = G1(δ(k − 1), δ(l − 1)).

Applying a discretized version of the Variations of Constants For-
mula one sees that a solution to the differential equation above
is given by

Gt(x, y) = δKt(x−y)+

∫ t

0

∑
z∈TδN

δKt−s(x−z)A(z)Gs(z, y) ds,

where Kt(x) describes a discrete heat kernel. With Gronwall-type
inequalities we then can derive necessary bounds in orders of δ
for Mk,k +Mk+1,k+1 − 2Mk,k+1.
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Discretization

The discretization process is applied to the space variable x, which
should be element of a grid TδN with N + 1 equidistant points on the
1-torus [0, 1], where δ := 1/N denotes the mesh size.

Step 1: Discretize the quantum Liouville equation

The following relations for the discrete representation are defined:

wave-vector ψ  z ∈ CN

density matrix ρ R ∈ DN

integral kernel
¯
ρ 

¯
R = R/δ

with DN := {R ∈ CN×N |R = R∗,Tr {R} = 1, R ≥ 0}. For the dis-
cretization H of the HamiltonianH we find by approximating derivatives
through difference quotients:

H = −~
2

2

1

δ2
D + V

with the discrete Laplace operator D given by

D =


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 and V =


V (t, 0)

V (t, δ)
. . .

V (t, 1− δ)


indicating the discrete multiplication operator given through a under-
lying continuous potential with periodic boundary conditions. The dis-
crete quantum Liouville equation for a density matrix R ∈ DN is then
written as

∂tR = − i
~

[H,R] . (7)

Step 2: Discretize the BGK-collision operator

To define the discrete quantum MaxwellianMR corresponding to
a density matrix R we consider the minimization problem

min
{
H̃ [R̃]

∣∣ R̃ ∈ DN ,
¯
Rkk =

¯
R̃kk ∀k ∈ [N ]

}
(8)

for the discrete relative quantum entropy

H̃ [R] = Tr
{
R̃(log R̃− 1 + βH)

}
.

Theorem. The solution of (8) is given by

MR = exp

(
A +

β~2

2δ2

[
N + NT − 21

])
,

under the assumption that there exists a unique diagonal matrix A ∈
CN×N , which is the suitable Lagrange multiplier to fulfill the constraint
M̄kk =Mkk/δ = Rkk.

Step 3: Diffusive limit

To derive a macroscopic equation, whose solutions only depend on time
and space, we look at a diffusive scaling of the QDD equation, obtained
by t 7→ t/ε and Q 7→ Q/ε:

ε∂tR
ε = − i

~
[H,Rε] +

1

ε
(MRε −Rε). (9)

and let ε → 0. Hence what becomes important are the effects of the
collision operator on a larger time scale.

Theorem 1. Let Rε be the solution of (9). Then the formal limit ε→ 0
yields Rε→ R0, where R0 is a quantum Maxwellian R0 =MR0 which
solves

∂tR
0
kk = − 1

~2

([
H, [H,R0]

])
kk

(10)

for all k ∈ [N ].

We call the system{
∂t[MR]kk = − 1

~2 ([H, [H,MR]])kk
MR = exp

(
A + β~2

2δ2

[
N + NT − 21

])
discrete quantum Drift-Diffusion (DQDD) model. Note that
this system describes the evolution of A or respectively, through the
non-local closure relation Mkk = Rkk = nk, of the density n.

Entropy dissipation

Theorem. Let M =MR0 be given as in Theorem 1. Then the quan-
tum fluid entropy satisfies:

d

dt
Tr {M(logM− 1 + βH)} ≤ βTr {M∂tV } . (11)


