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Over the last few decades electronic devices, as for example semiconductors, were downsized until reaching magnitudes in the nano-meter regime. This is where classical equations start to fail
giving good descriptions for the behaviour of quantum particles and quantum effects need to be taken into account.

Density-matrix formalism of The modified quantum Discretization
quantum mechanics Liuoville equation

The discretization process is applied to the space variable x, which
should be element of a grid Tsy with N + 1 equidistant points on the
1-torus |0, 1|, where 0 := 1/N denotes the mesh size.

The density operator p then fulfills the
quantum Liouville Equation

H[H.p). 3)

where [H, p| = Hp— pH denotes the com-
mutator of H and p. To moreover in-
clude the interaction between particles and
themselves as well as their environment one
adds a collision operator Q. Finally we
gain the modified Quantum Liouville

In quantum mechanics the state of a particle at time ¢ and
place € R” is described by its wave vector ¢)(t,z) € C
with ¢(t,-) € L*(R”,C). If the state is subject to a
given potential V' (¢, z), then the Hamiltonian H, which
operates on 1 as follows:

h2

corresponds to the total energy of the system, and a state
1 evolves according to the Schrodinger equation

Op = — Step 1: Discretize the quantum Liouville equation

The following relations for the discrete representation are defined:

wave-vector 1) ~» z € CV
density matrix p~~ R € Dy
integral kernel p~» R=R/6

with Dy = {R € CVN|R=R* Tr{R} = 1,R > 0}. For the dis-
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A mixed state is then modelled by a trace-class, positive q z' cretlzatlorT H of the Har.nlltonlan ‘H we find by approximating derivatives
and hermitian operator p; : L(RP, C) — L*(R”, C), the op = _ﬁ[H’ pl + Q(p). (4) through difference quotients: 2
so called density operator. I — o D4V
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with the discrete Laplace operator D given by

(_12 _12 . 1\ V(t,0)
D = S and V = Vi, o)
V(t1—6)

Choice of the collision operator -
12 1

\ 1 -y
indicating the discrete multiplication operator given through a under-
lying continuous potential with periodic boundary conditions. The dis-

crete quantum Liouville equation for a density matrix R € 3y is then

To carry out a diffusion approximation we postulate properties for the collision operator, like e.g.:
e Decay of a quantum entropy
A convenient entropy concept in the description of quantum systems in a thermal bath of fixed background
temperature 1/ is defined by the relative quantum entropy

Heont(p) = Tr{p(log p — 1+ SH)} .

written as

O.R =~ [H.R]. (7)
e [ ocal conservation of the density

Hereby the density n at a point x is given by p(z, z) where p denotes the integral kernel associated to p.
Since it gets to complex to model each particle collision if they are very frequent, it is common to choose a very

simple form for Q, the Bhatnagar—Gross—Krook (BGK) operator:
Qp) = M, —p
where the quantum Maxwellian M, is defined as
M, = min{ﬁc(mt(ﬁ)‘g(az, z) = p(x,z) Vo € RP}.

Step 2: Discretize the BGK-collision operator

To define the discrete quantum Maxwellian My corresponding to
a density matrix R we consider the minimization problem

min { H[R] | R € Dy, Ry, = Ry Vk € [N]} (8)
for the discrete relative quantum entropy
H[R] =Tr{R(logR— 1+ 8H)}.
Theorem. The solution of (8) is given by

B

Mp=exp | A-
R p ( 252
under the assumption that there exists a unique diagonal matrix A €
CN*N " which is the suitable Lagrange multiplier to fulfill the constraint

Mipr = Mpi/d = Ry

(5)

Expansion in Recovery of the continuous QDD

powers of h

[N+NT—2]1}),

Theorem. /n the limit 0 — 0 we recover the continuous quan-
tum Drift-Diffusion equation

O =V - (w (v+%>) (6)

from the DQDD model.

Idea of the proof:
With y as fixed element of the mesh we can look at the following
system of ODEs

The semiclassical limit h — 0
leads to the classical Drift-Diffusion
equation. To get an better insight
on how the quantum effects affect
the classical part in the QDD model
we further derive a leading order
correction to the classical equation,

Step 3: Diffusive limit

To derive a macroscopic equation, whose solutions only depend on time
and space, we look at a diffusive scaling of the QDD equation, obtained

i.e. an expansion of the QDD 123 by t — t/c and Q — Q/e:
2 whi - 0,G'(z,y) = A(x)G'(x,y) + — (G (x + 9, B 1
model l{p _to order A* while passing G (7, y) ()G (z,y) 252( (z Y) R — ot H, R+ ~(Mp — RY). (9)
to the limit 0 — 0. + Gz = 8,y) — 2GY(z, 1)) h £
and let ¢ — 0. Hence what becomes important are the effects of the

Theorem. In the limit 0 — 0, af-
ter expanding the discrete quantum
Maxwellian, the first order correc-
tion of the QDD in powers of h?,

G'(z,Yy) = 0uy.
which yields another representation of the quantum Maxwellian:

My = G1(5(k —1),0(l —1)).

collision operator on a larger time scale.

Theorem 1. Let R° be the solution of (9). Then the formal limit e — 0
yields R° — R°, where R" is a quantum Maxwellian R’ = M o which

7

called Gradient-Density model, Applying a discretized version of the Variations of Constants For- solves .
is given by _mul.a one sees that a solution to the differential equation above OR), = —33 ([H,[H, ROH)kk (10)
dn :%An +V - (nV(V + Vi[n))) s given by t for all k € [N].

+ O G'(z,y) = 5Kt(a:—y)+/0 Z OK'*(x—2)A(2)G*(z,y) ds, We call the system

#€Tow [ O MRl = —3 ([H, [H, Mgl))y,

Mp = exp (A+§7?22 [N+NT—2]1D
discrete quantum Drift-Diffusion (DQDD) model. Note that
this system describes the evolution of A or respectively, through the

non-local closure relation M, = Ry, = ny, of the density n.

)
Entropy dissipation

with the so called Bohm-potential

Van] = —%2v (%?) |

9

where K'(x) describes a discrete heat kernel. With Gronwall-type
inequalities we then can derive necessary bounds in orders of ¢

for My + M1 k1 — 2M 1
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Theorem. Let M = M yo be given as in Theorem 1. Then the quan-
tum fluid entropy satisfies:
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