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Abstract

We consider a Spin Glass at temperature T = 0 where the underlying graph is a locally finite tree. We prove for a wide range of coupling distributions that uniqueness of ground states is
equivalent to the maximal flow from any vertex to ∞ (where each edge e has capacity |Je|) being equal to zero, which is equivalent to recurrence of the simple random walk on the tree.
Furthermore we give a sufficient condition for the above statements.

Spin Glasses

Let G = (V,E) be a finite graph; For i.i.d. absolutely continuous random variables (Je)e∈E
and σ ∈ {−1,+1}V define the Hamiltonian of the system as

H(σ) := −
∑
{x,y}∈E

Jxyσxσy (1)

The random variables can take both positive and negative values; The Hamiltonian is clearly
invariant under a global spin flip. For such a Hamiltonian and an inverse temperature β > 0
one can define the Gibbs distribution on {−1,+1}V by

Gβ(σ) :=
1

Z
e−βH(σ) (2)

where Z is a normalizing constant, depending on the random variables and β. When
temperature approaches zero - or equivalently β →∞ - there is more mass on configurations
with low Hamiltonian, and indeed

Gβ →
1

2
δ{σ} +

1

2
δ{−σ} (3)

where σ and −σ are the minimizers of H(σ), the Ground states. There is an equivalent
characterization of ground states, which can also be extended to infinite graphs: σ is a
ground state if and only if ∑

{x,y}∈∂B

Jxyσxσy ≥ 0 ∀ B ⊂ V (4)

where ∂B ⊂ E is the set of edges with exactly one end in B. Some edge e = {x, y} is
called satisfied if Jxyσxσy ≥ 0. For most interesting graphs it is not possible, that every
edge is satisfied, see the example below. This phenomenon is called frustration, if the graph
does not have any loops, i.e. if the graph is a tree, this does not occur.

Ground States for infinite Graphs

As mentioned above, for an infinite, but still locally finite graph G = (V,E) one can define
ground states σ ∈ {−1,+1}V by the identity∑

{x,y}∈∂B

Jxyσxσy ≥ 0 ∀ B ⊂ V finite (5)

B are the empty vertices and ∂B the red edges in the figure below

Let G(J) :=
{
σ ∈ {−1,+1}V : σ is a ground state

}
. One of the central questions in

Spin-Glass theory and the motivation of this Thesis is to determine |G(J)| for different
graphs.

Ground states for infinite trees

For trees, there are two natural ground states, the ones where every edge is satisfied.
However, there still might be more than these two. The thesis provides for a wide range of
coupling distributions four equivalent statements for uniqueness and non-uniqueness of the
ground states:
Let T = (V,E) be a tree and suppose (Je)e∈E are i.i.d. with P (Je ∈ (−ε, ε)) = Θ(ε).
Then the following are equivalent:
i) The natural ground states are the only ground states a.s.
ii) inf{

∑
e∈Π |Je| : Π cutset separating 0 and ∞} = 0 a.s.

iii) MaxFlow(0→∞, 〈|Je|〉) = 0 a.s.
iv) The simple random walk on T = (V,E) is recurrent

Ideas of the proof

The equivalence of ii) and iii) is obtained by the MaxFlow-MinCut-Theorem, see [2] and
[5]
ii) ⇒ i) : Let σ be a ground state, for every edge e we can almost surely find some set Π̃
lying in the tree above e - see the figure below - and satisfying

∑
f∈Π̃ |Jf | < |Je|

From (4) it is not hard to see that e has to be satisfied. As e was arbitrary, the natural
ground states are the only ground states.

i) ⇒ iii) : If MaxFlow(0 → ∞, 〈|Je|〉) > 0 one can show the existence of two subtrees
T1, T2 and an edge f = {x, y} connecting these subtrees (see the figure below) such that

MaxFlowT1(x→∞, 〈|Je|〉) > |Jf | (6)

MaxFlowT2(y →∞, 〈|Je|〉) > |Jf | (7)

The configuration, where f is the only non satisfied edge is a ground state. Furthermore
one can even show the existence of infinitely many such edges f , so |G(J)| = ∞ in this
case.
iii)⇔ iv) : The main tool in proving this equivalence is the following Theorem, see [4]:
Let (κe)e∈E be independent exponentially distributed with mean ce, T is a tree and Z its
leaves. Then

E [MaxFlow(0→ Z, 〈κe〉)] ≥ Conduct(0→ Z, 〈ce〉) (8)

E[MaxFlow(0→ Z, 〈κe〉)] ≤ 2Conduct(0→ Z, 〈ce〉) (9)

Corollary
Let (κe)e∈E be i.i.d. exponentials with mean 1, then MaxFlow(0 → ∞, 〈κe〉) = 0 a.s. if
and only if the simple random walk is recurrent.
To extend this corollary for other coupling distributions one uses positive homogenity and
monotonicity of the Maximal flow. Furthermore note that MaxFlow(0 → ∞, 〈κe〉) > 0
if and only if MaxFlow(0 → ∞, 〈κe ∧ 1〉) > 0. As (Je)e∈E are distributed according
to some distribution of linear growth we can find - using the quantile function, see the
figure below - some coupling of Je and Ie, where (Ie)e∈E are i.i.d. Unif(0,1), such that
c · Ie ≤ Je ≤ C · Ie ∀e ∈ E and 0 < c < C <∞

by applying this idea first to Je and then to κe we get the desired statement. Note that we
really need the property P(Je ∈ (−ε, ε)) = Θ(ε) here.
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et Statistiques, volume 50, pages 28–62. Institut Henri Poincaré, 2014.
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