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Abstract

The time evolution of a general quantum system is given by a so-called quantum channel. In contrast to the time evolution of a closed quantum system which is governed by the Schrödinger
equation, not every quantum channel is an element of a semigroup of linear maps. We present the results of Gorini, Kossakowski Sudarshan and Lindblad that characterize semigroups of
quantum channels via their generators. Then we discuss the approach of Wolf and Cirac to introduce a more general class of channels that has a structure similar to the semigroup structure
but is more general, the class of infinitesimal divisible channels. Finally, we sketch a possible approach to obtain necessary criteria for infinitesimal divisibility.

Introduction and basic framework

Quantum theory entails many phenomena that are counterintuitive when compared with our
everyday experience. It is therefore all the more important to find a suitable mathematical
description. One such framework is presented in the following with emphasis on the time
evolution of a system. Thereafter, a certain kind of time evolution is discussed in greater
detail and a characterization of a more general class of evolutions is given.

Let Md be the complex d × d-matrices. We define the state space to be
S(Cd) = {ρ ∈ Md|ρ ≥ 0, tr[ρ] = 1}. With this definition tr[ρ·] : E(Cd)→ [0, 1] becomes
something like a probability measure on the set of effects E(Cd) := {E ∈Md|0 ≤ E ≤ Id},
it gives the probability of measuring an effect E in the state ρ. (The familiar name for this
connection of states and effects with measurement probabilities is Born rule.) This relation
in particular shows that we can think of a time evolution either as an evolution of states or
as an evolution of effects, namely: if T is the evolution on S(Cd), then the evolution T ∗ on
E(Cd) has to satisfy tr[T (ρ)E] = tr[ρT ∗(E)] ∀ρ ∈ S(Cd), E ∈ E(Cd).

Quantum channels and their descriptions

We first define the notion of a quantum channel in an axiomatic way.
Definition 1: A map T :Md→Md is called (quantum) operation if
1.T is linear

2.T is completely positive, i.e. T ⊗ Id :Md ⊗Mn→Md ⊗Mn is positive ∀n ∈ N
3.T is trace non-increasing, i.e. tr[T (ρ)] ≤ tr[ρ] ∀ρ ∈Md.
If T is even trace preserving, then T is called (quantum) channel. We define Td to be the
set of quantum channels over Md.

Example 1: We define the partial trace trB : B(HA ⊗ HB) → B(HA) to be the linear
map satisfying tr[trB[T ]C] = tr[T (C ⊗ IdB)] ∀T ∈ B(HA⊗HB) and ∀C ∈ B(HA). One
can show that this is a channel according to the definition above. Physically, the partial
trace trB means that we discard the system B in a way that is consistent with measurement
statistics. In particular, the partial trace trB maps S(HA ⊗HB) into S(HA).

Stinespring’s dilation theorem shows that Definition 1 agrees with the intuition of a
physicist, which is not obvious from the definition itself.
Theorem 1: (Stinespring) A linear map T :Md→Md is a quantum channel iff there
exist a Hilbert space HE, a pure state ξ ∈ S(HE) and a unitary U acting on Cd ⊗ HE

such that ∀ρ ∈ S(Cd): T (ρ) = trE[U(ρ⊗ ξ)U †].

So we can embed the considered open system into a larger closed system where the unitary
dynamics is given by a Schrödinger equation. If we then look only at the open system as a
subsystem, we obtain the evolution and it is given by a quantum channel.

Two further useful characterizations can be obtained by the operator-sum form called Kraus
representation (which can be derived using Stinespring’s theorem) and the Choi-Jamiolkowski
isomorphism, also often referred to as channel-state duality. Both are used in many proofs
in the context of quantum channels.
Theorem 2: (Kraus) A linear map T : Md →Md is a quantum channel if and only if
there exist finitely many matrices {Ki}i in Md such that

T (ρ) =
∑
n

KnρK
†
n,

∑
n

K†nKn = Id.

Theorem 3: (Choi-Jamiolkowski) Let Ω = 1√
d

∑
i |ii〉 ∈ Cd⊗Cd. Then the linear map

J : B(Md) → Md2 given by J (T ) = τ := (T ⊗ Idd)(|Ω〉〈Ω|) defines an isomorphism,
the so-called Choi-Jamiolkowski isomorphism.
The inverse is given by the relation tr[AT (B)] = d tr[τ (A⊗BT )] ∀A,B ∈Md.
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Quantum dynamical semigroups

Definition 2: A family of linear maps Tt : Md → Md with time parameter t ∈ R+ is
called dynamical semigroup if ∀t, s ∈ R+ : TtTs = Tt+s and T0 = Id. If in addition the
map t 7→ Tt is continuous (we are working on finite dimensional spaces, so there is no need
to specify the norm here), then the family is called a continuous dynamical semigroup.

A well-known statement from the theory of semigroups tells us that a strongly continuous
semigroup of operators has a generator. If we consider finite-dimensional spaces, then this
result becomes the following:
Proposition 1: Let {Tt}t∈R+

be a continuous dynamical semigroup. Then the map t 7→ Tt
is differentiable and Tt = etL for some linear L :Md→Md.

Many properties of semigroups have a counterpart in certain properties of its generator. In
1976, G. Lindblad and Gorini/Kossakowski/Sudarshan independently reached a result that
gives a complete characterization of the generators of continuous semigroups of quantum
channels.
Theorem 4: (GKLS) A linear map L : Md → Md is the generator of a dynamical
semigroup of quantum channels if and only if it can be written in one of the following
equivalent forms:

L(ρ) = φ(ρ)− κρ− ρκ†

= i[ρ,H ] +
∑
j

LjρL
†
j −

1

2
{L†jLj, ρ}

= i[ρ,H ] +

d2−1∑
j,k=1

Cj,k([Fj, ρF
†
k ] + [Fjρ, F

†
k ])

where φ is a completely positive linear map satisfying φ∗(Id) = κ + κ†, κ ∈ Md,
H = H† ∈ Md selfadjoint, {Lj}j a set of matrices in Md, C ∈ Md2−1, C ≥ 0 and
{Fj}j=1,...,d2−1 an orthonormal basis of the space {A ∈Md : tr[A] = 0}.

The following Lemma shows that every channel gives rise to a quantum dynamical semigroup
that approximates the channel.
Lemma 1: Let T :Md →Md be a channel. Then {et(T−id)}t≥0 is a completely positive
semigroup. If we choose U0 ∈ Td, U0(ρ) = U0ρU

†
0 to be the unitary channel satisfying

trH[TU0] = sup
U∈Td unitary

trH[TU ], then TU0 − id is the Lindblad generator of a purely dissi-

pative semigroup.

Infinitesimal divisibility of channels

A quantum dynamical semigroup {Tt}t≥0 with generator L satisfies the differential equation
d
dtTt = LTt. The following definition is motivated by looking at this differential equation
and allowing a time dependent generator.
Definition 3: Let t > 0 and T : [0, t]× [0, t]→ Td be a continuous map satisfying

1.T (t3, t2)T (t2, t1) = T (t3, t1) ∀ 0 ≤ t1 ≤ t2 ≤ t3 ≤ t

2. limε→0‖T (τ + ε, τ )− Id‖ = 0 ∀τ ∈ [0, t).

Then we call the family {T (t2, t1)}0≤t1≤t2≤t a continuous completely positive evolution.
Moreover we define J to be the set of channels that are contained in a continuous
completely positive evolution.

Intuitively, this definition is very similar to the following:
Definition 4: We define the set I = {T ∈ Td| ∀ε > 0 ∃n ∈ N, {Ti}1≤i≤n ⊆ T such
that (i) ‖Ti − Id‖ ≤ ε and (ii)

∏n
i=1 Ti = T}.

We call I the set of infinitesimal divisible channels. We call I ′ the set of channels that
satisfy the defining condition of I with approximations of the form Ti = eLi for Lindblad
generators Li.

Though all these definitions seem very similarly intuitively, only the inclusions I ′ ⊂ J ⊂ I
can easily be seen. The following theorem by Wolf/Cirac establishes the equivalence of the
definitions. (The proof uses an approximation based on Lemma 1.)
Theorem 5: With the definitions above we have I ′ = J = I.

It can easily be seen from multiplicativity and continuity of the determinant that every
infinitesimal divisible channel T satisfies det(T ) ≥ 0. The structure of the Lindbladians
that can be used to approximate T now suggests that it is possible to prove inequalities
concerning eigenvalues or singular values (and hence the determinant) of T using the Lie-
Trotter formula. In the case of normal Lindblad operators one can show that this hope is
indeed justified. However, it seems difficult to generalize such results to arbitrary Lindblad
generators and thus to general infinitesimal divisible channels.


