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Abstract
In my Bachelor’s thesis, I consider two special cases of the multi-marginal optimal transportation problem. In the first one, a special discrete marginal measure is considered. The
Birkhoff- von Neumann theorem assures that in the classical two-marginal case, there exist optimizers of the so-called Monge-form. I give simple examples that show that for more
than two marginals, optimizers are not always of this form, following [3]. The second special case treats cost-functions of a special form. As was shown in [1], the problem can
then by reduced to a two-marginal problem with an additional constraint, called n-density representability. I give an explicit characterization of the discrete n-density representable
measures.

Problem Formulation

The multi-marginal optimal transportation problem considered here has the following
form. Given

• A marginal number n ≥ 2

• A marginal measure µ ∈ P (Rd)

• A cost-function c : (Rd)n → [0,∞]

solve the minimization problem

inf
π∈P ((Rd)n)

π 7→µ

∫
(Rd)n

c(x1, . . . , xn)dπ

The so-called marginal condition π 7→ µ means that each projection of π onto one of
the n components is equal to the marginal measure µ. Formally, this means

π((Rd)m−1 × A× (Rd)n−m) = µ(A) ∀A ⊂ Rd measurable ∀m = 1, . . . , n

In the classical two-marginal (i.e. n = 2) case, this can be interpreted as the problem
of finding the cheapest way to transport mass from one hole, whose form is modelled
by the measure µ, to another hole with the same form. c(x, y) indicates the cost of
transporting mass sitting at x to some point y.
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A Discrete Case
Consider the special case

µ =
1

l

l∑
i=1

δi

i.e. µ is contentrated on l points giving the same mass to each of them.

Definition (Monge-form). A measures π ∈ P ({1, . . . , l}n) is said to have Monge-
form, if it is concentrated on the graph of a function T : {1, . . . , l} → {1, . . . , l}n−1,
i.e.

π(graphT ) = 1

Question. For which values of n and l is it true that for every cost-function c,
there exists a Monge-form optimizer π∗ ∈ P ({1, . . . , l}n)?

Motivation: A measure of Monge-form is uniquely determined by T ⇒ reduction from
the ln unknowns π({i1, . . . , in}) to the l unknowns T (i).
Writing P n

l for the set of measures π ∈ P ({1, . . . , l}n) with π 7→ µ, we get a geometric
reformulation of our question:

Question. For which values of n and l does every extreme point of P n
l have the

Monge-form?

It is well-known [3], that unfortunately this only is the case if n = 2

Theorem. For arbitrary n > 2 and l > 1, there exists an extreme point of P n
l

which does not have the Monge-form.

In my thesis, I give a simple construction for such non-Monge extreme points for
arbitrary n > 2 and l > 1. The most minimalistic example is in P 3

2 :
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π(2,1,1)=1/4π(1,1,1)=0

Observation: The front side of the cube is a normalized 2 × 2 identity matrix, the
back side is a permutation of it.
To construct examples for n > 3, find a suitable higher-dimensional analogue for
identity matrices. This yields for example the non-Monge extreme point
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in P 4
2 .

Non-Monge points for l > 2 can be constructed by ”glueing” such l = 2 points.

n-Density Representability

Consider another special case: Marginal number n and marginal measure µ are arbi-
trary, but c has a special form:

c(x1, . . . , xn) =
∑

1≤i<j≤n
h(xi, xj)

with a symmetric function h. Such a cost-function appears for example in relation
to the Kohn- Sham density functional theory [2]. As was shown in [1], symmetry
porperties of c can be used to massively reduce the dimension of the transport problem:

Definition (n-density representability). A measure ν ∈ P ((Rd)2) is called n-
density representable (n-d. r.), if there exists a symmetric measure π ∈ P ((Rd)n)
such that µ is the projection of π onto the first two coordinates:

ν(V ) = π(V × (Rd)n−2)

Theorem. The n-marginal problem can be reduced to a two-marginal problem
with an additional constraint:

inf
π 7→µ

∫
Xn

c(x1, . . . , xn)dπ =

(
n

2

)
inf
ν 7→µ

ν n-d. r.

∫
X2

d(x1, x2)dν

The problem that arises with the reformulated two-marginal problem is that there
does not exist a convenient characterization of the set of n-density representable
measures up to now. In my thesis, I give a characterization of the discrete n-density
representable measures, i.e. of the set

Pn−d.r.({1, . . . , l}2) := {ν ∈ Pn−d.r.({1, . . . , l}2) : ν n-d.r.}

This is a generalization of [1], where the special case l = 2 is considered.

Theorem. The set Pn−d.r.({1, . . . , l}2) is equal to

conv

{(
1 +

1

n− 1

)( l∑
k=1

λkδk

)
⊗

(
l∑

k=1

λkδk

)
− 1

n− 1
(id× id)#

(
l∑

k=1

λkδk

)
:∑

λi = 1 and λi ∈ {0, 1/n, . . . , (n− 1)/n, 1}
}

References
1. Gero Friesecke, Christian B Mendl, Brendan Pass, Codina Cotar and Claudia Klüppelberg. N-density representability and the optimal
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