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Abstract

In Learning, traditional methods like regression have mostly been developed for continuous input data and categorical variables are often recoded into several binary variables. When recoding,
the dimension of the input data can significantly increase and lead to problems caused by the curse of dimensionality. The question arises whether we can transform categorical data more
appropriately. The value difference metric is one way of computing a distance between both continuous and categorical variables. This metric learns the distance between input variables from
a given data set by estimating conditional probabilities.

Curse of Dimensionality

Assume we are given a data set of 50 instances on two binary variables (left) and six binary
variables (right). The instances are plotted in their corresponding cells, the color reflects
their known label. For a new instance with unknown label we can predict its label by choosing
the color that appears most often for the given input values of this new instance. While this
is a reasonable prediction in low dimensions it does not work for high dimensions. In the
right picture we see that for some input value combinations there are no instances in our
data set available.
Curse of Dimensionality
To retain the quality of a prediction the number of necessary instances in the data set
increases exponentially with the dimension.

Linear Modeling (Dummy Coding and Error)

Linearity assumption
Given a data set of instances (yi ∈ R,xi ∈ Rp)i∈[n] with xi the input vector and yi the label
of the i-th instance, linear modeling assumes:

E[yi] = β0 + β2xi1 + ... + βpxip

For categorical variables this assumption does not hold. Hence variables are recoded such
that for each category a β-coefficient is estimated.

Dummy Coding
Let x be a categorical variable with k categories. Dummy coding replaces x by k− 1 binary
variables x1, ..., xk−1 which are coded as follows

xj =

{
1 if x takes category j

0 otherwise
for all j ∈ [k − 1].

However this recoding decreases the expected prediction error.

Expected Prediction Error in Linear Modeling
The expected prediction error of a new instance x0 in linear modeling is

EPE(x0) = E[(y0 − β0 + β2x01 + ... + βpx0p)
2]

and decomposes into an irreducible error the squared bias and the variance. This motivates
the EPE as a reasonable quality criterion. Under some mild assumptions on the distribution
of new instances x0, we compute

Ex0
EPE(x0) = σ2 + σ2

(p + 1)

n
where σ2 is the variance of the assumed error in linear modeling. From the fact that
the expected prediction error increases with the number of variables p in the model, we
conclude that categorical variables with many categories can highly decreases the quality
of the prediction of a linear model. Is there a way of learning that can handle categorical
variables without increasing the dimension of the data?

Value Difference Metric for Categorical Variables

To apply geometric methods to data, often a notion of distance is necessary. But how can
one define a distance between categorical variables that reflects the similarity of categories
with respect to the label? The idea of the value difference metric is to compare the
conditional probabilities of two categories to have the same label. Since the value difference
metric has been developed for the purpose of classification, it allows in its original form only
finitely many possible labels ci, i ∈ [C]. In our example the label has two possible values,
namely red and blue.

Value Difference Metric
Let x be a categorical variable and let (xi|ci), i ∈ [n], be n instances where the input vector
contains data on the categorical variable x and the label takes one of a finite number C ∈ N
of classes cj, j ∈ [C]. The distance between two categories a, b of the categorical variable
x measured by the value difference metric is given by:

vdmx(a, b) =

C∑
j=1

∣∣Px,a,cj − Px,b,cj∣∣
where
•Px,a,c =

Nx,a,c

Nx,a
is an estimate of the conditional probability that for an instance i with

xi = a the label is given by ci = c.

•Nx,a is the number of instances i ∈ [n] with xi = a.

•Nx,a,c is the number of instances i ∈ [n] with xi = a and ci = c.

Value Difference Metric for Continuous Variables

The above definition of the value difference metric is not reasonable for continuous variables.
The estimation of the conditional probabilities from the data set requires a sample size large
enough for each value of a variable. However, for continuous variables each value is most
likely to be unique and hence the sample size will be one. A more sophisticated idea is to
treat a window of observations around each value of a continuous variable as a category and
then estimate the conditional probability of this window. The following image depicts this
idea for the age variable in a data set.

Using the Value Difference Metric for Prediction

The value difference metric has the advantage of treating both categorical and continuous
variables the same by comparing their conditional probabilities and thus does not need to
recode categorical data. Rethinking our label estimation in dimension six, we could instead
of only considering instances that are in the same cell as a new input vector also consider
similar instances for the prediction of the color. The main question is how to identify similar
instances. The introduced value difference metric gives us an appropriate way of quantifying
this similarity and can improve the prediction.
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