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Abstract
The theory of D-modules is an algebraic approach to linear partial differential equations. A D-module can represent a system of differential equations and one can define the notion
of solutions in a given function space. In general, different (i.e. not isomorphic) D-modules can have the same holomorphic solutions. The concept of tempered solutions refines
this notion and enables us to better distinguish D-modules by their solutions in certain cases. The aim of the thesis was to introduce tempered holomorphic functions and work
through an explicit example in the one-dimensional case. However, tempered functions do not form a sheaf on the usual topology of a complex manifold. For this reason, one has
to work on the subanalytic site.

D-modules and differential equations

On a complex manifold, we have the sheaf of linear partial differential operators with

holomorphic coefficients DX . It is a sheaf of non-commutative C-algebras.
Locally, an operator P ∈ DX(U) is of the form

∑

α∈Nn

|α|≤m

aα(z)

(

∂

∂z1

)α1

· · ·

(

∂

∂zn

)αn

for m ∈ N and holomorphic functions aα.

To an operator P , globally defined on X, one associates the DX-module
MP := DX/(DXP ).
The holomorphic solutions of the equation Pu = 0 are then represented by

S (MP ) := HomDX
(MP ,F)

because
S (MP )(U) ∼=

{

u ∈ F(U)
∣

∣Pu = 0
}

.

More generally, if M is a DX-module and F is a DX-module of function spaces
on X (e. g. F = OX or F = C∞

X ), one calls

RHomDX
(M,F)

the solution complex of M with values in F .

The subanalytic site

A site is an algebraic generalization of a topological space. It consists of a category C

(in analogy to the category Op(X) of open subsets of a topological spaceX), endowed
with a so-called Grothendieck topology, which, for each object U ∈ C , defines a set
Cov(U) of coverings of U (a set of families of morphisms into U). An important
example for our purposes is the subanalytic site Xsa associated to a real analytic
manifold X: In contrast to the usual topology, we only consider a certain selection of
open subsets and coverings: The underlying category Opc(Xsa) contains the relatively
compact, subanalytic open subsets (together with inclusion maps as morphisms) and
we admit only finite coverings.

Subanalytic sets have several useful properties to work with special kinds of functions
such as tempered functions. They are defined to be locally projections of semianalytic
sets:

Definition. Let X be a real analytic manifold. A subset Z ⊆ X is called semi-
analytic if, for any p ∈ X, there is an open neighbourhood U ⊆ X of p such that

Z ∩ U =
⋃

i∈I

⋂

j∈J Zij where I and J are finite and Zij = {y ∈ U |fij > 0} or

Zij = {y ∈ U | fij = 0} for an analytic function fij on U .

We call Z ⊆ X subanalytic if, for any p ∈ X, there exist an open neighbourhood

U ⊆ M of p, a real analytic manifold N and a relatively compact semianalytic

subset A ⊆ M × N such that Z ∩ U = π(A) where π : M × N → M is the

projection.

Let k be a commutative unital ring. A presheaf (of k-modules) on Xsa is just a
contravariant functor F from Opc(Xsa) to Mod(k). It is a sheaf if, for any finite
collection {Ui}i∈I ⊆ Opc(Xsa), the sequence

0 → F(U) →
∏

i∈I

F(Ui) →
∏

(i,j)∈I2

F(Ui ∩ Uj)

is exact, where U :=
⋃

i∈I Ui.

Let F be a sheaf of k-modules on X. There are different ways to make a sheaf on
the subanalytic site out of F :

• The functor ̺∗ (direct image):

̺∗F(U) := F(U) for U ∈ Opc(Xsa) ⊆ Op(X)

• The functor ̺!:
̺!F is the sheaf associated to the presheaf

U 7→ F(U) := lim−→
U⊆V ∈Opc(Xsa)

F(V ).

Tempered functions

We explore a certain class of smooth (complex-valued) functions which do not grow
“too fast” near their domain’s boundary:

Definition. Let X be a real analytic manifold and C∞
X its sheaf of complex-valued

smooth functions and U ⊆ X open. A function f ∈ C∞
X (U) is called tempered if

f and all its derivatives satisfy the following polynomial growth condition:

For any p ∈ X, there exist a compact neighbourhood K ⊆ X of p and a constant

M ∈ N such that

sup
x∈K∩U

dist(x,K\U)M |f(x)| < ∞.

The subset of C∞
X (U) consisting of tempered functions is denoted by C∞,t

X (U).

The assignment U 7→ C∞,t
X (U) does not define a sheaf on X because glueing tem-

pered functions does not always result in a function which is again tempered. How-
ever, tempered smooth functions form a sheaf on the subanalytic site Xsa, which we
denote by C∞,t

Xsa
. This sheaf is a ̺!DX-module.

We define the sheaf of tempered holomorphic functions to be the complex of
̺!DX-modules

Ot
Xsa

:= RHom̺!DX̄

(

̺!OX̄ , C
∞,t
Xsa

)

,

which is concentrated in degree 0 if X is a complex curve. Here, X̄ denotes the
complex conjugate manifold.

Similarly to our previous definition of solution complexes, we call

S olt(M) := RHom̺!DX

(

̺!M,Ot
Xsa

)

the tempered solutions of M.

An example of tempered solutions

The example of Kashiwara and Schapira (2003) is very suitable for understanding the
importance of tempered solutions and the subanalytic site.

Let X = C and P = z2 ∂
∂z

+ 1. Then by Picard-Lindelöf the holomorphic solutions in
degree 0 are

S (MP ) = CX\{0} · exp(1/z).

To calculate S t(MP ) := H0
S olt(MP ), we prove a statement about the tempered-

ness of exp(1/z):

Proposition. Let U ∈ Opc(Xsa). Then exp(1/z) is tempered on U if and only if

there is an A > 0 such that Re
(

1
z

)

< A on U , i. e. U ⊆ UA for

UA :=

{

z ∈ C

∣

∣

∣
Re

(1

z

)

< A

}

.

A consequence is the following formula:

S
t(MP ) ∼= lim−→

A>0

̺∗CUA

It is remarkable that this limit does not commute with the functor ̺∗ and hence
S t(MP ) 6∼= ̺∗CX\{0}.

This example also shows how tempered solutions refine the notion of holomorphic
solutions:
If we consider the operator Q = z

(

z ∂
∂z

+ 1
)

, one can prove that the holomorphic
solutions of MP and MQ are isomorphic, but S t(MQ) ∼= ̺∗S (MQ) ∼= ̺∗CX\{0},
so we can indeed distinguish P and Q by their tempered solutions.
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