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Abstract
We extend the Lévy-driven Ornstein-Uhlenbeck process as a timewise process to time and space. This is achieved by employing stochastic Volterra integral equations in time and space, which
comprise a stochastic integral with respect to a Lévy basis. We formulate conditions for the existence and uniqueness of the solution and derive an explicit solution formula. After giving criteria
for stationarity of these processes, we establish the second order structure in the stationary case by means of this solution formula. The theoretical results are illustrated by concrete examples.
For further details we refer to [3].

Motivation
A Lévy-driven Ornstein-Uhlenbeck (OU) process is defined as the unique solution of the
stochastic integral equation

X(t) =

∫ t

0

−λX(s) ds +

∫ t

0

dL(s), t ≥ 0,

where λ > 0 and L is a Lévy process, i.e. L has independent and stationary increments and
càdlàg paths (see e.g. [1, Section 4.3]).
Goal: Generalization to a stochastic process in time and space.
Idea: We generalize the defining stochastic integral equation to:

X(t, x) =

∫ t

0

∫
Rd

X(t− s, x− y)µ(ds, dy) +

∫ t

0

∫
Rd

g(t− s, x− y)Λ(ds, dy), (1)

where (t, x) ∈ R+ × Rd, µ is a measure on R+ × Rd, g : R+ × Rd → R is deterministic,
and Λ is a Lévy basis.

The deterministic convolution Volterra integral equation

X(t, x) =

∫ t

0

∫
Rd

X(t− s, x− y)µ(ds, dy) + f (t, x) (2)

The forcing function f does not depend on X (see [2, Section 4.1]).

Lemma: Let µ ∈Mloc(R+×Rd) such that µ({0}×Rd) = 0. Then there exists a unique
measure ρ ∈Mloc(R+ × Rd), called the resolvent, such that

ρ + µ = µ ∗ ρ.

Theorem: Let µ ∈ Mloc(R+ × Rd) with µ({0} × Rd) = 0. Then for every f ∈
L1

loc(R+ × Rd) the unique solution in L1
loc(R+ × Rd) to (2) is

X = f − f ∗ ρ.

Stochastic integration w.r.t. Lévy bases

Definition: A stochastic process (Λ(B))B∈Bb is called a homogeneous Lévy basis if
1) for disjoint (Bi)i∈N in Bb satisfying

⋃∞
i=1Bi ∈ Bb we have

Λ
(⋃∞

i=1Bi

)
=
∑∞

i=1 Λ(Bi) a.s.

2) (Λ(Bi))i∈N are independent for disjoint (Bi)i∈N in Bb

3) Λ(B)
d
= Λ(B̃) for all B, B̃ in Bb such that Leb(B) = Leb(B̃)

By the Lévy-Khintchine formula we get for the characteristic function:

Φ(Λ(B))(u) = exp

{
Leb(B)

[
iub− 1

2
u2C +

∫
R

(eiuz − 1− iuz1(−1,1)(z))ν(dz)
]}

,

where b ∈ R, C ∈ R+ and ν is a Lévy measure on R.
Then (b, C, ν) is called the characteristic triplet.

Definition: A measurable function h : R+ × Rd → R is called Λ-integrable if there
exists a sequence of simple functions (hn) such that

1)hn converges to h Leb-a.e.,

2) (
∫
B hn dΛ) converges in probability for all B ∈ B(R+ × Rd).

In this case we define: ∫
B h dΛ = P- lim

n→∞

∫
B hn dΛ.

This definition does not specify the class of Λ-integrable functions. However, there are
convenient integrability conditions (see [4, Section 2]).

The stochastic convolution Volterra integral equation

Goal: Solve equation (1).
Idea: Imitate the deterministic theory pathwise.

Theorem: Let

•µ ∈Mloc(R+ × Rd) with µ({0} × Rd) = 0,

• g ∈ L1
loc(R+ × Rd) be bounded, and

•Λ be a homogeneous Lévy basis on R+ × Rd with finite second moments.

Then the unique solution (up to versions) to (1) is given by

X(t, x) =

∫ t

0

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy), (t, x) ∈ R+ × Rd.

Example

X(t, x) =

∫ t

0

−λX(s, x) ds +

∫ t

0

∫
Rd

1A(t,x)(s, y)e
−λ‖x−y‖

c Λ(ds, dy) (3)

A(t, x) = A + (t, x) A = {(t, x) ∈ R− × Rd : ‖x‖ ≤ c|t|}

Theorem: The unique solution to equation (3) is given by

X(t, x) =

∫ t

0

∫
Rd

1A(t,x)(s, y)e−λ(t−s)Λ(ds, dy). (4)

A sample of the tempo-spatial evolution of a sin-
gle Lévy jump. The peak belongs to the point of
occurrence of the Lévy jump in space-time. An ex-
ponential decay in time and a uniform propagation
in space are observable. For pure-jump Lévy bases
X in equation (4) can be understood as the super-
position of a large number of these jump effects.

Stationarity

Problem: No stationary solutions so far.
Idea: Modify the stochastic integral equation to:

X(t, x) =

∫ t

0

∫
Rd

X(t−s, x−y)µ(ds, dy)+

∫ t

0

∫
Rd

g(t−s, x−y)Λ(ds, dy)+V (t, x) (5)

Theorem: Under the additional assumption that g ∗ (δ0− ρ) ∈ L1(R+×Rd) is bounded
there exists a stochastic process V on R+ × Rd such that equation (5) has a unique (up
to versions) strictly stationary solution, namely

X(t, x) =

∫ t

−∞

∫
Rd

(g ∗ (δ0 − ρ))(t− s, x− y)Λ(ds, dy), (t, x) ∈ R+ × Rd.

Second order structure

Theorem: The second order structure of the strictly stationary solution X is given by

E(X(0, 0)) = κ1

∫
R+

∫
Rd

(g ∗ (δ0 − ρ))(s, y) dsdy,

acf(t̃, x̃) = Cov(X(t, x), X(t + t̃, x + x̃))

= κ2

∫
R+

∫
Rd

(g ∗ (δ0 − ρ))(s, y)(g ∗ (δ0 − ρ))(s + t̃, y + x̃) dsdy,

for all t, t̃ ∈ R+, x, x̃ ∈ Rd,
where κ1 = b +

∫
R\(−1,1) x ν(dx) ∈ R and κ2 = C +

∫
R x

2 ν(dx) ∈ R+.

The autocorrelation function of the strictly
stationary solution in the example:

acorrf(t, x) = min(exp(−λt), exp(−λ|x|
c ))

Notation
M(R+ × Rd) signed complete Borel measures on

R+ × Rd with finite total variation
Mloc(R+ × Rd) signed measures on R+ × Rd lying

in M([0, T ]×Rd) when restricted to
[0, T ]× Rd for all T ≥ 0

L1
loc(R+ × Rd) functions f : R+×Rd→ R s.t. f ∈

L1([0, T ]× Rd) for all T ≥ 0
Bb bounded Borel sets in R+ × Rd
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