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Abstract
In combinatorial optimization, the term online refers to any problem setting where decisions have to be made based on incomplete information. The random order model, in which the behaviour
of algorithms for online problems is analysed in expectation over a randomly chosen arrival order of the input sequence, is one of the methods suggested in the literature to move beyond classical
worst case analysis and its various drawbacks. We apply the random order model to makespan minimization in the online restricted assignment problem and show that no randomised algorithm
can have a random order competitive ratio better than Ω (log logm) where m is the number of machines.

Online

“online”=“without full information”
In the online version of an optimization problem, instances arrive “piece by piece”. An
algorithm has to decide how to treat each piece right away. In general, these solutions are
not optimal.
Typically, the performance of an online algorithm ALG is analysed by its worst case behaviour
compared to an optimal solution OPT:

Definition: Competitive Ratio (Adversarial Order)

crALG := sup
σ∈Γ

ALG (σ)

OPT (σ)

Γ: set of all input instances

For certain problems, this ratio is unbounded when instances get larger. In this case, an
asymptotic version of the definition can be used in connection with Landau notation.
Drawback: Worst case analysis often does not explain behaviour in practice. Worst case
instances usually are artificial and rely on a specific arrival order.

Scheduling Problems

In general: “Deciding, when and where a number of jobs/tasks is processed on a set of
available machines/servers”
Here: Makespan minimization under restricted assignment

Problem: n jobs with specified “length” pj arriving one by one; each job must be placed
on one of a given subset of m machines.
Objective: Minimizing the makespan (“total length”) of the schedule.

Example:
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Makespan

[1, 2, 3]
[2, 3] [2]

[1, 3]

Input Schedule computed by ALG

ALG
[1, 3] [1, 2, 3]

[2, 3] [2]

Random Order Model

Random Order Competitive Ratio
Idea to overcome drawback of adversarial order competitive ratio: draw arrival order of
instances uniformly at random from all permutations

Definition: Competitive Ratio (Random Order)

rocrALG := sup
σ∈Γ

Eπ [ALG (π (σ))]

OPT (σ)

Γ: set of all input instances
Eπ: expectation w.r.t. permutation π chosen uniformly at random

Note: this is equivalent to averaging the performance over all possible arrival orders

A Tight Result for Adversarial Order
Consider the problem of online makespan minimization under restricted assignment.

Theorem: Lower Bound [1]
crALG = Ω (logm) for any possibly randomised algorithm ALG where m is the number of
machines in an instance.

Proof/Construction:
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[1, 5]
[1, 5]
[1, 5][1, 5]
[1, 5][1, 5][1, 5] W.l.o.g. ALG places each

job on the machine with
lower index. Otherwise,
relabel machines IDs.

Placing each job on the
machine with higher
index yields an optimal
makespan of 1.

ALG

[1, 5] [1, 3] [1, 2]

[2, 6] [2, 4]

[3, 7]

[4, 8]

Here:

m = 23

Cmax = 3

General construction:

m = 2k

Cmax = k = logm

The construction works analogously for other values of m.

Theorem: Upper Bound [2]
Placing each job on the currently least loaded feasible machine is dlogme+1-competitive.
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Extending the Lower Bound to Random Order
Consider the problem of online makespan minimization under restricted assignment.

Main Challenge Construction of the adversarial order lower bound relies on the jobs
arriving in a specific order! This cannot be guaranteed in the random order model.

Main Idea Concatenate multiple instances to a large instance. This increases the probability
of at least one sub-instance arriving in desired order. A permutation of the full instance
induces independent permutations of the sub-instances. Constant probability of at least one
sub-instance arriving in original order allows to apply the adversarial order construction.

Theorem: Lower Bound (Random Order) [3]
rocrALG = Ω (log logm) for any possibly randomised algorithm ALG where m is the number
of machines in an instance.

Proof/Construction

m′

machines
← jobs

m′ ...

m′ ...

...

...

m := (m′)!

= (m′ − 1)! ·m′

machines

E [ALG (π (σ))] ≥ E [ALG (π (σ)) | � ] · P [ � ]

= Ω (logm′) & 1− 1
e

= Ω (log logm′!)

=

Ω (log logm)

OPT(π (σ)) = 1

”�”: Event that at least
one subinstance arrives

in worst-case order

Further Steps In the proof, the following non-trivial technical issues arise:

• Lower bound should also hold for randomised algorithms

•Algorithm might use the first sub-instances for“training”and would then be able to handle
a sub-instance arriving in original order better

These difficulties can be overcome by an elaborate randomised construction of the sub-
instances. For the formal proof we refer to the Bachelor’s thesis [3].

Summary
Currently known upper and lower bounds for online makespan minimization with restricted
assignment – the new result is marked in orange:

Adversarial Order Random Order
Competitive Ratio Competitive Ratio

Lower Bound Ω (logm) Ω (log log m)

Upper Bound dlogme + 1 dlogme + 1


