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Abstract

Eigenvectors of transfer operators play an important role in the calculation of almost-invariant sets[1]. In the case of a flow arising from the solution of an autonomous ordinary differential
equation, the transfer operator for the flow at time-t is described by a partial differential equation called the Liouville equation. For stochastic perturbations of the flow, the Fokker-Planck
equation takes the role of the Liouville Equation. Each of these equations has an infinitesimal generator which is a linear partial differential operator that has the same eigenvectors as the
transfer operator being considered[1].

Recently, a discretisation method for general linear partial differential operators was introduced by Olver and Townsend[2, 3] called the ultraspherical method. This method is attrac-
tive because it results in banded representation matrices for a wide class of linear operators, including some of those mentioned above. This suggests that this discretisation method could be
effective for discretising the infinitesimal generator of the Liouville/Fokker-Planck equation to find almost-invariant sets.

Transfer Operators

Consider a bijective function T : Ω → Ω. For non-singular T with respect to a measure
µ, the Frobenius-Perron operator PT : L1(µ) → L1(µ) describes the transfer of measures
under T . ∫

A

PTfdµ =

∫
T−1(A)

fdµ

In the case that Tt is the time-t flow map of an autonomous ordinary differential equa-
tion u′ = F (u), the Frobenius-Perron operator is described by a partial differential equation.

More precisely: subject to some technical restrictions, the functions ρ(x, t) := PTtf (x)
obey the Liouville Equation:

∂tρ = − div (Fρ)

For a stochastic perturbation of the flow, the Liouville Equation is replaced by the Fokker-
Planck equation:

∂tρ = − div (Fρ) +
ε2

2
∆ρ

Eigenvectors of the transfer operators can be used to give information about important
features of the flow such as“almost-invariant”sets. [1]. This suggests that discretisations of
the Liouville/Fokker-Planck equation can be used to numerically obtain information about
almost-invariant sets (see also [1]).

The Ultraspherical Method

•A spectral method, introduced in [2, 3]

•Gives representation matrices for wide class of linear ordinary differential operators.

•Different basis used for domain and range of representation matrix.

•Basis for the domain consists of Chebyshev polynomials of the first kind:

•Basis for the range consists of Ultraspherical-(λ) polynomials (λ ∈ N0), which are (up to
scaling) higher order derivatives of the Chebyshev polynomials of the first kind.

•Both multiplication and differentiation become banded! The resulting representation-
matrices (including boundary conditions) can be QR-factorised in linear time[2].

•Higher-dimensional partial differential operators can be discretized using a tensor-product
approach (see also [3]).

The Infinitesimal Generator

When looking at solutions to the ODE u′ = Au with linear A, then the eigenvectors of the
solution operator etA are the same as those of A (spectral mapping theorem). A similar
result also holds for the infinite-dimensional setting[1]. Here it is enough to consider the
eigenvectors of the operator ρ 7→ div(Fρ) instead of looking at the time-t solution operator
of the Liouville-Equation. This makes it possible to use discretisation methods like the
ultraspherical method for numerically approximating eigenvectors of the transfer operator.

Polynomial Spectral-shifts

• Instead of looking for eigenvectors of discretisation A of the infinitesimal generator, look
at those for p(A) where p is a polynomial.

•By spectral mapping theorem, eigenvectors stay the same.

• If |p(λ)| ≤ for all λ ∈ σ(A), and if non-zero eigenvalues of the infinitesimal generator are
in the interior of the left-hand side of the complex plane, and p(0) = 1, then we can look
for small eigenvalues of A by looking for large eigenvalues of p(A). This means power
iteration can be applied to find small eigenvectors of A without needing to invert A.

• If p is the stability polynomial for an explicit Runge-Kutta method, then p(A) describes the
numerical solution of the Liouville Equation using the method of lines. The requirement
|p(A)| ≤ 1 corresponds to requiring absolute stability for the Runge-Kutta method used
in the method of lines.

Numerical Results

•No conclusive results regarding the effectiveness of the ultraspherical method for calculat-
ing almost-invariant sets.

• Successful calculation of invariant densities in the 1d case using ultraspherical discretisa-
tion.

•The method of polynomial spectral shifts was successfully applied together with a pseu-
dospectral discretisation using the fast Fourier transform to calculate almost invariant sets.
However, doing so was not faster than explicitly dealing with the represenation matrix of
the discretisation of the infinitesimal generator.

The image above shows the sign of the real part of eigenvectors calculated with pseudospec-
tral method and a polynomial spectral shift using a fourth order Runge-Kutta method.
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