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Proper q-colorings

Given a graph G = (V,E) and a finite set of spins Σ, a spin system π is a probability
distribution on ΣV . The special case of

π(σ) :=
1

Z
exp

 ∑
{u,v}∈E

gu,v (σ(u), σ(v))

 , (1)

with Σ = {1, . . . , q}, normalizing constant Z and nearest neighbor interactions

gu,v(σ(u), σ(v)) =

{
0 if σ(u) 6= σ(v)

−∞ else
(2)

is called the proper q-coloring model. All elements σ ∈ ΣV with π(σ) > 0 are referred
to as proper q-colorings. Intuitively, this are all assignments of colors to the vertices such
that every two vertices which share an edge do not have the same color.

Fig. 1: Proper q-coloring using q = 5 colors

Our goal is to provide a sample according to the proper q-coloring model, i.e. a proper
q-coloring chosen uniformly at random among all possible proper q-colorings.

Sampling from the proper q-coloring model

Given an initial proper q-coloring, define a Markov chain according to one of the following
transition mechanisms:

Glauber dynamics for proper q-colorings

1 Choose v ∈ V uniformly at random

2 Choose color of v uniformly among all colors not taken by some neighbor of v

Metropolis sampler for proper q-colorings

1 Choose v ∈ V and c ∈ Σ independently and uniformly at random

2 Set color of v to c if this gives a proper q-coloring and keep the current configuration else

Fig. 2: Two possible steps of Glauber dynamics with q = 5 colors.

Theorem. For any finite graph G = (V,E) with maximum degree ∆ and q > ∆ + 1 colors,
both samplers converge towards the uniform distribution over all proper q-colorings on ΣV .

Speed of convergence

For a Markov chain (Xt) on a state space Ω with transition matrix P and stationary distribu-
tion π, we define the mixing time tmix(ε) := max

x∈Ω
‖Px(Xt ∈ ·)− π(·)‖TV as a quantitative

measure of how fast the Markov chain actually converges to π.

Theorem (Bubley/Dyer, 1997). Consider the proper q-coloring model on G = (V,E) with
maximum degree ∆ for q > 2∆ colors. Then the mixing time of Glauber dynamics satisfies

tmix(ε) ≤
⌈(

q −∆

q − 2∆

)
n log

(n
ε

)⌉
, (3)

where n denotes the number of vertices in G.

Idea of the proof: Analyze a coupling for configurations which differ in precisely one vertex.

Perfect sampling

Goal: Provide a sample exactly according to the proper q-coloring model.
For Glauber dynamics (Xx

t ) starting in x ∈ ΣV , we define

Grand coupling: Coupling of (Xx
t ) for all initial x ∈ ΣV simultaneously

Disagreement process: Ht(u) :=

{
1 if ∃x, x′ : Xx

t (u) 6= Xx′
t (u)

0 else

Complete coupling: At t∗ it holds that Ht∗(u) = 0 for all u ∈ V

Proposition. The configuration drawn at a (random) time t∗, where we have detected com-
plete coupling, is a sample exactly according to the stationary distribution.

Bounding chain approach

How can we detect complete coupling for the proper q-color model efficiently?

Idea: Define the bounding chain to be a Markov chain (Yt) on
(
2Σ
)V

such that for any
(Xx

t ) in the grand coupling
Xx
t (v) ∈ Yt(v) (4)

holds for all t ≥ 0 and v ∈ V . We have complete coupling at t∗ if
∏
v∈V
|Yt∗(v)| = 1.

Fig. 3: Proper q-coloring with possible bounding chain

Theorem (Huber, 1999). Consider the proper q-coloring model on G = (V,E) with max-
imum degree ∆ and |V | = n for q ≥ ∆(∆ + 2) colors. Then for t ≥ 1

β(k + log n)n with
0 < β < 1 constant and k ∈ N arbitrary, it holds that

P(complete coupling not detected until time t) ≤ e−k (5)

Cutoff phenomenon

A sequence (Xn
t )n∈N of irreducible and aperi-

odic Markov chains exhibits cutoff if for all
0 < ε < 1

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 (6)

A sequence (wn)n∈N is a cutoff window for

(Xn
t )n∈N if wn = o(t

(n)
mix) and

t
(n)
mix(ε) = t

(n)
mix(1− ε) +O(wn) (7)

holds for all 0 < ε < 1.

t

max
x∈Ω
‖Px(Xn

t ∈ ·)− π‖TV
1

t
(n)
mix(

1
e)

Fig. 4: Cutoff behavior for a Markov chain (Xn
t ) with n large

Cutoff phenomenon for Glauber dynamics

Theorem (Lubetzky/Sly, 2012). Consider (continuous-time) Glauber dynamics for the
proper q-coloring model on a sequence of boxes Λn ⊂ Zd of side length n. Suppose
that the corresponding disagreement process Ht satisfies

max
u∈Λn

P(Ht(u) = 1) ≤ ce−Ct (8)

for all t ≥ 0, n ∈ N and constants c, C > 0, then the dynamics exhibits cutoff with a
window of O(log log n). In particular, (8) holds for q ≥ ∆(∆ + 2) colors.

Key ideas for the proof:

1) Break dependencies
between the vertices

Fig. 5: Consider only color changes

within a ball of radius O(log n)

2) Analyze the mixing be-
havior on sparse sets

Fig. 6: Sparse set consisting of well

separated components

3) Reduce L1-distances to
L2-distances

1

Fig. 7: Behavior of the different

distances for large n if cutoff occurs

Cutoff for Metropolis sampler

Corollary. For q ≥ ∆(∆+2) colors, the Metropolis sampler for the proper q-coloring model
on a sequence of boxes Λn ⊂ Zd of length n exhibits cutoff with a window of O(log log n).

Idea of the proof: Use that the Metropolis sampler can be seen as a time-shifted version of
Glauber dynamics in the special case of proper q-colorings.
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