

Two discretizations of Koenigs nets and their connection

Jannik Steinmeier, Prof. Dr. Tim Hoffmann

Technische Universität München Lehrstuhl für Geometrie und Visualisierung

Abstract

We investigate the relation between two discretizations of Koenigs nets: The classical discretization of Bobenko and Suris, which defines discrete two-dimensional Koenigs nets as nets where the intersection points of diagonals build a net of planar quadrilaterals, and Doliwa's discretization, where a Koenigs lattice is defined as net which has six of its Laplace transforms on a conic at each quadrilateral. We prove that the nets defined by intersection points of diagonals of a classical discretized two-dimensional Koenigs net are exactly Doliwa's lattices. We describe how a classical Koenigs net can be constructed on a Doliwa lattice.

(1)

From smooth to discrete

Doliwa's discretization

The discrete Laplace transforms of a discrete net with planar quadrilaterals can be defined as the intersection points of the opposite edges of each quadrilateral.

Definition 4 (Doliwas Koenigs lattice). Let $f : \mathbb{Z}^2 \to \mathbb{R}^N$ be a net with planar quadrilaterals. It is called a Koenigs lattice if for every quadrilateral of the net there exists a conic passing through the six Laplace transforms L^1 , L^1_1 , L^1_1 , L^2_2 , L^2_2 .

1. Smooth nets are maps $f : \mathbb{R}^m \to \mathbb{R}^N$ 2. Discrete nets are maps $f : \mathbb{Z}^m \to \mathbb{R}^N$

A large topic of discrete differential geometry is the discretization of special classes of nets.

Smooth Koenigs nets

We are concerned with the class of Koenigs nets.

Definition 1. Koenigs net A map $f : \mathbb{R}^2 \to \mathbb{R}^N$ is called a Koenigs net if there exists a scalar function $\nu : \mathbb{R}^2 \to \mathbb{R}_+$, such that

 $\partial_1 \partial_2 f = (\partial_2 \log \nu) \partial_1 f + (\partial_1 \log \nu) \partial_2 f$

From this definition one can find multiple equivalent characterizations. Two of them have been discretized to obtain discrete nets with similar properties as the smooth net:

The six Laplace transforms at a quadrilateral $(ff_1f_{12}f_2)$

Connection of both discretizations

There is a simple connection between both characterizations:

1. Koenigs nets can be found to be nets which admit a *dual*. Bobenko and Suris discretize the notion of duality to define the *classical discrete Koenigs net*.

2. Koenigs nets can be defined as nets which have their *Laplace transforms* in second order contact with a conic. Doliwa discretizes this property to define the *Koenigs lattice*.Note that the discretizations are not equivalent. We are interested in their connection.

Classical discretization of Koenigs nets

Bobenko and Suris discretize duality:

Two planar quadrilaterals are called dual if their corresponding edges are parallel and their noncorresponding diagonals are parallel.

Theorem 5. A map $f : \mathbb{Z}^2 \to \mathbb{R}^N$ is a Koenigs lattice of Doliwa if and only if a classical Koenigs net $g : \mathbb{Z}^2 \to \mathbb{R}^N$ exists such that f consists of the intersection points of diagonals of g

A discrete Koenigs net(black) and its intersection points of diagonals, which are exactly Doliwa's Koenigs lattices(blue)

In the proof we show how such a Koenigs net g can be constructed on a given Koenigs lattice f. It turns out that there is a freedom of 2N + 2, i.e. there exists a (2N + 2)-parameter

Dual quadrilaterals

Definition 2 (Discrete Koenigs net). A net $f : \mathbb{Z}^m \to \mathbb{R}^N$ with planar quadrilaterals is called a discrete Koenigs net if it admits a dual, i.e. a net $f^* : \mathbb{Z}^m \to \mathbb{R}^N$ with planar quadrilaterals such that all elementary quadrilaterals of the net f^* are dual to the corresponding quadrilaterals of f.

One can prove a geometric characterization.

Theorem 3 (Geometric characterization). Let $f : \mathbb{Z}^2 \to \mathbb{R}^N$ be a net with planar quadrilaterals such that for every point f = f(u) its four neighbours $f_{\pm 1}$, $f_{\pm 2}$ are not coplanar. Then f is a discrete Koenigs net if and only if for every point f = f(u) the intersection points of diagonals of the four quadrilaterals adjacent to f are coplanar, that is, if the intersection points of diagonals build a new net with planar quadrilaterals.

family of Koenigs nets belonging to one Koenigs lattice.

References

A. Bobenko and Y. Suris. Discrete Differential Geometry: Integrable Structure. Graduate studies in mathematics. American Mathematical Soc. ISBN:9780821884126.
A. Bobenko and Y. Suris. "Discrete Koenigs nets and discrete isothermic surfaces". In: Intern. Math. Research Notices 11 (2009), pp. 1976 – 2012.
A. Doliwa. "Geometric discretization of the Koenigs nets". In: J. Math. Phys. 44 (2003), pp. 2234 – 2249.

The figures were created using Cinderella and Wolfram Mathematica.

