
Generalization of Kantorovich Duality to multi-marginal
optimal transportation and applications in economics
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Abstract
To transport something in an optimal manner - this is a problem people faced for hundreds and thousands of years. But just recently - in the 1940s - Kantorovich tried to find a
solution to this problem by modeling it from a mathematical point of view. He formulated ’Kantorovich’s optimal transportation problem’. As a linear minimization problem with
convex constraints, it admits a dual formulation which is celebrated as the Kantorovich duality. However, he only focused on the two marginal setting. The generalization of this
famous duality to multi-marginal optimal transportation creates far more ways to apply this topic in economics.

Theory of optimal transportation
It is a common occurrence that children have the great idea to build their sandcastles
in the grass instead of the sandbox. Then their parents face the task of restoring
the initial situation in the most efficient manner possible. This problem is the perfect
approach to introduce the theory of optimal transportation. Both the pile and the
hole in the sandbox have the same volume which can be normalized to 1. Hence, they
can be modeled by probability measures µ and ν defined respectively on some measure
spaces X and Y . The energy consumed by moving the sand around is represented by
the measurable and non-negative cost function c : X × Y → R+

0 ∪ {+∞}.

Historically Monge presented the initial approach. He captured the given problem in
the following formulation:

Monge’s optimal transportation problem
Minimize

I[T ] =

∫
X

c(x, T (x))dµ(x)

over the set of all measurable maps T such that T#µ = ν.

Kantorovich built upon Monge’s results, however he changed one vital aspect. He left
himself a loophole enabling him to split mass by using probability measures on the
product space X×Y as transference plans. All of the measures on the product space
are summarized in the set P(X × Y ). As it is necessary that µ is transported to ν,
only those transference plans are admissible, which are an element of

Π(µ, ν) = {π ∈ P(X × Y )|π(A× Y ) = µ(A), π(X ×B) = ν(B)

for all measurable A ⊆ X and B ⊆ Y }.

This defintion at hand one can move onto considering:

Kantorovich’s optimal transportation problem
Minimize

I[π] =

∫
X×Y

c(x, y)dπ(x, y)

for π ∈ Π(µ, ν).

Kantorovich’s optimal transportation problem is a linear minimization problem with
convex constraints. Therefore it admits a dual formulation. In the considered case
this formulation is the celebrated Kantorovich duality. As the optimal transportation
problem itself can be transferred in the multi-marginal setting in a natural manner,
one is tempted to translate the dual problem as well. Then the multi-marginal duality
provides an important alternative formulation to the transportation problem. Instead
of minimizing the functional I over all probability measures with fixed marginals, one
can maximize a certain dual problem over n potentials, each of which is weighted with
one of the marginals.

Multi-marginal optimal transportation
Theorem: Generalized Kantorovich Duality
Let X1, ..., Xn be Polish spaces and µ1, ..., µn be Borel-probability measures on
X1, ..., Xn respectively. Moreover, assume that c : X1× ...×Xn → R+ ∪ {+∞} is a
lower semi-continuous cost function.
Now we define

• ∀π ∈ P(X1 × ...×Xn) : I[π] =
∫
X1×...×Xn

c(x1, ..., xn)dπ(x1, ..., xn),

• ∀(ϕ1, ..., ϕn) ∈ L1(dµ1)× ...× L1(dµn) : J(ϕ1, ..., ϕn) =
∑n

i=1

∫
Xi
ϕi(xi)dµi,

• Π(µ1, ..., µn) to be the set of all Borel probability measures on X1× ...×Xn with
marginals µ1 on X1,..., µn on Xn,

• the set of all measurable functions (ϕ1, ..., ϕn) ∈ L1(dµ1)×...×L1(dµn) satisfying
a certain upper boundary condition almost everywhere:

Φc ∩ L1 = {(ϕ1, ..., ϕn) ∈ L1(dµ1)× ...× L1(dµn)|
∑n

i=1 ϕi(xi) ≤ c(x1, .., xn)

for dµ1 − almost all x1 ∈ X1, ..., dµn − almost all xn ∈ Xn}.

Then

infπ∈Π(µ1,...,µn) I[π] = sup(ϕ1,...,ϕn)∈Φc∩L1 J(ϕ1, ..., ϕn)

holds.
Moreover, the infimum on the left-hand side is attained, i.e. there is a π∗ ∈
Π(µ1, ..., µn), such that infπ∈Π(µ1,...,µn) I[π] = I[π∗].
Furthermore,

sup(ϕ1,...,ϕn)∈Φc∩L1 J(ϕ1, ..., ϕn) = sup(ϕ1,...,ϕn)∈Φc∩Cb
J(ϕ1, ..., ϕn)

holds. Thereby, the definition of Φc∩Cb naturally appears by inspecting the definition
of Φc ∩ L1.

Economic applications
The generalized Kantorovich duality is a great tool to tackle economic problems. In
the following the market for houses is captured within the mathematical objects of
the Kantorovich duality.

mathematical formulation economic interpretation
i ∈ [n] This is one of the n goods, which are nec-

essary in order to build a house.

Xi for i ∈ [n] This is a quality space containing all the
qualities the good i is available in.

µi for i ∈ [n] This is the distribution of the quality space,
which is determined by the wealth and be-
haviour of the costumers.

c : X1 × ...×Xn → R+ ∪ {+∞} c(x1, ..., xn) are the expenses of a house-
building-company (hbc) if they build a house
of the quality (x1, ..., xn).

Π(µ1, ..., µn) These are all the possibilties for the hbc to
meet the demand.

I[π] =∫
X1×...×Xn

c(x1, ..., xn)dπ(x1, ..., xn)
for π ∈ Π(µ1, ..., µn)

These are the expenses of the hbc if it
meets the costumers demand, following π ∈
Π(µ1, ..., µn).

infπ∈Π(µ1,...,µn)∫
X1×...×Xn

c(x1, ..., xn)dπ(x1, ..., xn)
These are the minimal costs the hbc has to
pay in order to meet the demand.

ϕi : Xi → R für i ∈ [n] These are the costs the hbc has to pay in
order to buy the good i in quality xi from a
third party.

∀x1 ∈ X1, ..., xn ∈ Xn :∑n
i=1 ϕi(xi) ≤ c(x1, ..., xn)

The third party arranges its prices in such
a manner, that hbc has to pay at most the
in-house production costs.

infπ∈Π(µ1,...,µn) I[π] =
sup(ϕ1,...,ϕn)∈Φc∩L1 J(ϕ1, ..., ϕn)

The third party can arrange its price func-
tions in such a way that if the hbc accepts
the deal, it would have to pay (almost) as
much as it would have ideally paid producing
the goods itself.
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