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Abstract

We’ve discussed Optimal Design of Experiments for linear, elliptic PDEs. Many chemical processes can be modelled by equations depending on unknown parameters, e.g. heat capacities, which
can not be measured directly. However, often it is possible to take measurements of other quantities, like the temperature, which depend on those parameters. Due to technical limitations
those measurements are peturbed by random measurement errors. Therefore an estimate for the true parameters can be determined by Maximum likelihood estimation from the obtained
mesurements. The quality of such an estimate corresponds to the size of the confidence domains of the Maximum likelihood estimator. By the optimal placement of the sensors we can design
experiments that lead to Maximum likelihood estimators with minimized confidence domains. Our main contribution to this topic is a formulation of this sensor placement problem as a nonlinear
optimization problem over the set of all positive measures in the unit ball in M(Ω), the space of finite Radon measures. We proved existence of optimal designs, derived optimality conditions
and characterized their structure for a model problem with one unknown parameter.

Model Problem and Setting

As a model problem we consider a linear, elliptic PDE, given in its weak form by

find y ∈ H1
0(Ω) :

∫
Ω

(∇y · ∇ϕ + qyϕ)dx =

∫
Ω

fϕdx ∀ϕ ∈ H1
0(Ω) (1)

where Ω denotes an open and bounded subset of Rd, d ∈ {2, 3}. Furthermore we assume
that it is a convex polygon or polyhedron, respectively. f is a given L2(Ω) function and
q ∈ Qad := [ε,∞) for an ε > 0.
We considered experiments in which the underlying chemical/physical process can be mod-
elled by an equation of the form (1) and q takes the role of the unknown parameter. For
the ”true” value of the parameter we write q∗.

Procedure

Optimal Design of Experiments [3].

From a data set {ỹdi}ni=1 collected in an experiment at a fixed set of sensor locations {xi}ni=1

an estimate for the parameter q∗ is determined in the Parameter Identification problem
by Maximum likelihood estimation.
In the Design problem the parameter is fixed and the sensor locations are subject to
optimization.

Approximation of the Confidence Intervals

We define the Parameter-to-State operator S by

S : Qad→ H2(Ω) ∩H1
0(Ω) q → S(q)

where S(q) denotes the unique solution of (1).
For a detailed discussion of Parameter Identification with Maximum likelihood we refer to
[1]. Due to the nonlinearity of S the confidence interval G(q∗, α) to the niveau α is hard to
calculate. Therefore we approximate it by the confidence interval G(q̃mean, α) of a random
variable q̃, q̃ ∼ N (q̃mean, Cq), where

Cq =
1

〈S ′(q̄)(1)2, ω〉
q̃mean = q̄ + Cq〈S ′(q̄)(1)(S(q∗)− S(q̄)), ω〉

where S ′(q̄)(1) denotes the directional derivative of S in the direction 1 at a point q̄, given
as solution to

min
q∈Qad

1

2

n∑
i=1

λi(S(q)(xi)− ỹdi)2

and ω =
∑n

i=1 λiδxi. The boundary points of G(q̃mean, α) are given by

p1/2 = q̃ ± γ(α)√
〈S ′(q̄)(1)2, ω〉

with an α-dependent constant γ(α). λi denotes the number of measurements taken at xi.
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Design Problem

For a given estimate q̄ of q∗ an optimal placement of the measurements ω̄ fulfills

ω̄ ∈ arg min
ω∈W̄ad

1

〈S ′(q̄)(1)2, ω〉
= arg min

ω∈W̄ad

φ(ω) (2)

,i.e. it minimizes the variance of q̃. The admissible set W̄ad is defined as

W̄ad =
{
ω ∈M(Ω)| ω ≥ 0, ‖ω‖M(Ω) ≤ 1

}
.

Radon measures in W̄ad tell you where to measure and how much ”experimental effort”should
be spent at every spatial point.

Discretization and Main Results

We consider a shape regular and quasi-uniform family {Th}h>0 of triangulations of Ω and
discretize (1) by piecewise linear finite elements. For the Design problem we consider a
semi-discretization

min
ω∈W̄ad

φh(ω) = min
ω∈W̄ad

1

〈S ′h(q̄)(1)2, ω〉
, (3)

where Sh denotes the discrete Parameter-to-State map. For fixed h > 0 small enough we
obtain:
Theorem 1: Let φ in (2) be proper. Then there exists a solution ω̄h to (3) and there
holds the equivalence

1. : ωh is optimal for (3).

2. :‖ωh‖M(Ω) = 1 und supp ωh ⊂
{
x ∈ Ω| S ′h(q̄)(1)2(x) = ‖S ′h(q̄)(1)2‖∞

}
.

Corollary 1: There exists an inner node x of Th so that δx is optimal.

Numerical Results

We considered (1) on the unit sqare in R2 with

f (x1, x2) = (π2 + 2)2 sin(πx1) sin(πx2) q∗ = 2

We proceeded as followed:

• In Exp. 1 an estimate from 3 randomly placed measurements was determined.

• In Exp. 2 we took 3 additional randomly place measurements.

• In Exp 3. we took the 3 measurements from Exp. 1 and performed 3 additional measure-
ments at a computed, optimal sensor location.

To compare the quality of the obtained estimates, we computed realizations of the confi-
dence intervals to the level 0.95 as well as the locations of the measurements.
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