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Abstract

We give a direct alternative proof of an area law for the entanglement entropy of the ground state of disordered oscillator systems—a result due to Nachtergaele, Sims and Stolz [1]. Instead of
studying the logarithmic negativity, we invoke the explicit formula for the entanglement entropy of Gaussian states to derive the upper bound. We also contrast this area law in the disordered
case with divergent lower bounds on the entanglement entropy of the ground state of one–dimensional ordered oscillator chains.

The Model

Let G = (V , E) be a connected, infinite graph with uniformly bounded degree N ∈ N. It
is an easy exercise to establish that the latter property is equivalent to the exisistence of a
µ > 0 such that

sup
x∈V

∑
y∈V

e−µd(x,y) <∞, (1)

where d(·, ·) denotes the natural graph distance on G. Further, we pick two families of

real–valued random variables {h(q)
xy}x,y∈V and {h(p)

xy}x,y∈V. Suppose there is an exhaustive

sequence of finite sets Λn ↗ V such that the matrices h
(])
Λn

= (h
(])
xy)x,y∈Λn

, ] ∈ {p, q},
are almost surely symmetric and positive definite. Moreover, we assume the uniform norm
bound

sup
n∈N

max
{
‖h(p)

Λn
‖, ‖(h(p)

Λn
)−1‖, ‖h(q)

Λn
‖
}
≤ C a.s.

for some deterministic C <∞. On a suitably chosen dense domain within the Hilbert space
Hn =

⊗
x∈Λn

L2(R, dqx) we install the usual self–adjoint position and momentum operators
q = (qx)x∈Λn

and p = (px)x∈Λn
, respectively. These operators constitute the finite volume

Hamiltonian

HΛn
=
(
qT pT

)(h(q)
Λn

0

0 h
(p)
Λn

)(
q
p

)
. (2)

Entanglement Entropy of Gaussian States

Let Λ0 ⊂ V be a finite distinguished region and assume n ∈ N large enough such that
Λ0 ⊂ Λn. Then for a density operator σΛn

∈ B(Hn), the entanglement entropy with respect
to the bipartition

Hn =
⊗
x∈Λ0

L2(R, dqx)⊗
⊗

x∈ΛnrΛ0

L2(R, dqx) (3)

is given by

S(σΛn
; Λ0) = − tr (σΛ0

log σΛ0
) ,

where σΛ0
= trΛnrΛ0

(σΛn
).

It is a well–known fact that the unique ground state of the finite volume Hamiltonian
(2) is Gaussian and can be represented by a density matrix, which we shall denote by ρΛ0

.
Introducing the shorthand r = q⊕p, its entanglement entropy with respect to the bipartition
(3) can be computed in terms of the covariance matrix Γ,

Γxy = tr (ρΛn
{rx, ry}) , x, y = 1, . . . , 2|Λn|,

with the help of the handy formula

S(ρΛn
; Λ0) =

∑
γ∈σsymp(Γ̃)

(
γ

2
+

1

2

)
log

(
γ

2
+

1

2

)
−
(
γ

2
− 1

2

)
log

(
γ

2
− 1

2

)
, (4)

where Γ̃ is obtained from Γ by erasing the rows and columns belonging to Λn r Λ0. Here,
σsymp(·) denotes the symplectic spectrum counting multiplicities, which is in turn character-
ized by the following theorem due to Williamson [3]:

Theorem Let Γ ∈ R2n×2n be symmetric and positive definite and define a symplectic form
on R2n×2n by

Ω =

(
0 −1n
1n 0

)
.

Then there exists a symplectic matrix S ∈ SP(2n,R) = {S ∈ R2n×2n |STΩS = Ω} such
that

STΓS =

(
L 0
0 L

)
,

where L = diag(γ1, . . . , γn) > 0. The numbers γ1, . . . , γn, which are called symplectic
eigenvalues of Γ and which form the symplectic spectrum σsymp(Γ) = {γk}nk=1, can be
computed as the positive eigenvalues of iΓ1/2ΩΓ1/2 or as the imaginary part of the eigenvalues
of ΓΩ.

As an atavism of Heisenberg’s celebrated uncertainty relation, the symplectic eigenvalues of
the covariance matrices Γ and Γ̃ lay in the interval [1,∞) so that formula (4) is well defined.

Furthermore, it is—at least since the work of Cirac, Schuch, and Wolf [2]—well known that
for a finite volume Hamiltonian of the form (2) the covariance matrix of the ground state
takes a particularly simple form:

Γ =

(
(h

(p)
Λn

)1/2h
−1/2
Λn

(h
(p)
Λn

)1/2 0

0 (h
(p)
Λn

)−1/2h
1/2
Λn

(h
(p)
Λn

)−1/2

)
, hΛn

= (h
(p)
Λn

)1/2h
(q)
Λn

(h
(p)
Λn

)1/2. (5)

Main Results

Invoking the explicit formulae (4) and (5), we give an alternative proof of a result due to
Nachtergaele, Sims, and Stolz [1] asserting an area law bound on the entanglement under a
suitable localization assumption:

Theorem. Concomitant to the assumptions above, suppose that there exist c < ∞ and
ν ∈ (2 logN ,∞) such that

E
[∣∣∣〈(h

(p)
Λn

)1/2δx, h
−1/2
Λn

(h
(p)
Λn

)1/2δy

〉∣∣∣] ≤ c e−νd(x,y) (6)

for all n ∈ N. Then, there exists C ∈ (0,∞) such that for any finite subset Λ0 ⊂ V
E [S(ρΛn

; Λ0)] ≤ C |∂Λ0|
for all n ∈ N with Λ0 ⊂ Λn.

In view of this theorem, it is natural to ask whether the area law behavior of the entanglement
entropy is violated when dropping the localization assumption (6). This questions is answered
positively as we illustrate by the investigation of the one–dimensional toy system depicted
in Figure 1 below. It is defined by choosing V ∈ {N,Z},

h
(q)
Λn

=


2 −1 0
−1 2 . . .

. . . . . . −1
0 −1 2

 , and h
(p)
Λn

= 1 (7)

in the finite volume Hamiltonian (2).
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Figure 1: The toy system on V = Z for the exhaustive sequence Λn = [−n, n] ∩ Z.

We can prove the following theorem for this system:

Theorem Let V ∈ {N,Z} with next-neighbor edges. Then there exist exhaustive sequences

(Λn)n∈N, (Λ
(n)
0 )n∈N of finite sets with Λ

(n)
0 ⊂ Λn ⊂ V for all n ∈ N such that for the sequence

of ground state density matrices (ρΛn
)n∈N of the finite volume Hamiltonians specified by (7),

lim
n→∞

S(ρΛ(n); Λ
(n)
0 ) =∞.

Idea of the Proof of the Violation of an Area Law

In either case V ∈ {N,Z}, we exploit the fact that the spectral decomposition of the

tridiagonal matrix h
(q)
Λn

is known explicitly and that the resulting sums can be well aproximated
by Riemann integrals for large |Λn|.
V = N: Here, we solve the aforementioned integrals and establish a divergent lower bound
on the last diagonal entry of the matrix product whose ordinary spectrum constitutes the
entanglement entropy in light of (4) and Williamson’s theorem. The min–max theorem then
implies the divergence of the largest eigenvalue, and hence, the divergence of the largest
symplectic eigenvalue.

V = Z: Due to the emergence of translation invariance of the system in the limit Λn↗ Z,
the limiting operators are Toeplitz. Hence, after deriving a lower bound on the entanglement
entropy (4) in terms of determinants of Toeplitz matrices, we have a tremendous arsenal of
powerful machinery at our disposal. In particular, we appeal to Szegő’s strong limit theorem
to establish the divergence of the determinants in the lower bound.

Eventually, a thorough error analysis furnishes explicit exhaustive sequences of finite sets for
which we may infer the asserted divergence of the entanglement entropy.
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