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Technical University of Munich

Multi-Population Phase Oscillator Networks
with Higher-Order Interactions

Christian Bick and Tobias Böhle and Christian Kuehn
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Abstract

The classical Kuramoto model consists of finitely many pairwise coupled oscillators on the circle. In many applications a simple pairwise coupling is not sufficient to describe real-world phenomena
as higher-order (or group) interactions take place. Hence, we replace the classical coupling law with a very general coupling function involving higher-order terms. Furthermore, we allow for
multiple populations of oscillators interacting with each other through a very general law. In our analysis, we focus on the characteristic system and the mean-field limit of this generalized
class of Kuramoto models, in which the number of oscillators tends to infinity. We propose a general framework to work with three aspects (higher-order, multi-population, and mean-field)
simultaneously. Assuming identical oscillators in each population, we derive equations for the evolution of oscillator populations in the mean-field limit. Then, we investigate dynamical properties
within the framework of the characteristic system such as the stability of the state, in which all oscillators are synchronized within each population. Even though it turns out that this so called
all-synchronized state is never asymptotically stable, under some conditions on the coupling function and with a suitable definition of stability, the all-synchronized state can be proven to be at
least locally stable.
Keywords: Kuramoto model, Mean-field, Synchronization.

Mathematical Setting

Let P(S) denote the set of probability measures on the unit circle S := R/2πZ. To compare
two measures µ, ν ∈ P(S), we use the Wasserstein-1 distance [1], which is also referred to
as the bounded-Lipschitz distance

W1(µ, ν) := inf
γ∈P(S×S)

M1γ=µ, M2γ=ν

∫
S×S
|α− β|S γ(dα, dβ) (1a)

= sup
f∈D

∣∣∣∣∫
S
f (α) dµ(α)−

∫
S
f (α) dν(α)

∣∣∣∣ , (1b)

where M1γ and M2γ are the marginals of γ, i.e., the push-forward measures under the map
(α, β) 7→ α and (α, β) 7→ β and

D := {f ∈ C(S) : |f (α)− f (β)| ≤ |α− β|S for all α, β ∈ S}.
Further, for n ∈ N we write [n] := {1, . . . , n} and for R ∈ N we define the multi-index
s = (s1, . . . , sR) ∈ [M ]R. Then, given µ = (µ1, . . . , µM) ∈ P(S)M , we define the measure

µ(s) = (µ(s1), . . . , µ(sR))

and write |s| = R.

The Equations

We consider the dynamics ofM ∈ N coupled phase oscillator populations. We now introduce
a general set of equations that describes the network evolution, where the state of population
σ ∈ [M ] is given by a probability measure µσ.
The network interactions are determined by a multi-index rσ ∈ [M ]Rσ for each population
together with Lipschitz continuous coupling functions gσ : S|rσ|×S|rσ|×S→ R. Specifically,
these coupling functions are supposed to be L-Lipschitz when S|rσ|× S|rσ|× S is considered
with the metric d(α, β) =

∑2|rσ|+1
i=1 |αi− βi|S. If µin = (µin

1 , . . . , µ
in
M) ∈ P(S)M denotes the

initial state of the network, # denotes the push-forward operator and µ = (µ1, . . . , µM),
then the evolution of µ(t) = (µ1(t), . . . , µM(t)) is determined by characteristic equations
[2]

∂tΦσ(t, ξin
σ , µ

in) = (Kσµ(t))(Φσ(t, ξin
σ , µ

in)) (2a)

µσ(t) = Φσ(t, ·, µin)#µin
σ (2b)

Φσ(0, ξin
σ , µ

in) = ξin
σ . (2c)

for σ ∈ [M ] and the evolution operator

(Kσµ)(φ) = ωσ +

∫
S

∫
S|rσ|

∫
S|rσ|

gσ(α− β, γ − φ) dµ(rσ)(α)dµ(rσ)(β)dµσ(γ), (3)

where ωσ ∈ R is the instantaneous frequency of all oscillators in population σ.

The Synchronized State

We define the set of synchronized states as S = {δφ : φ ∈ S}. The set of all-
synchronized states is then given by SM .

Definition 1 The set SM is stable if for all σ ∈ [M ] and all neighborhoods Uσ ⊂ P(S) of
S there exist neighborhoods Vσ of S such that for any µin = (µin

1 , . . . , µ
in
M) ∈ V1×· · ·×VM ,

the solution µ(t) of (2),(3) satisfies µ(t) ∈ U1 × · · · × UM for all t ≥ 0.

Theorem

Let

g(0,1)
σ (α, γ) :=

∂

∂γ
gσ(α, γ), aσ := g(0,1)

σ (0, 0).

Theorem 2 If the coupling functions gσ are continuously differentiable, i.e. gσ ∈ C1(S|rσ|×
S), and they satisfy aσ > 0 for all σ ∈ [M ] then, the set of all-synchronized states SM is
stable.

A Simplified System

As a simplified case of system (2)–(3), we take M = 1 and s1 = {}. Then, the system
takes the form

∂tΦ(t, ξ, µin) = (Kµ(t))(Φ(t, ξ, µin)) (4a)

µ(t) = Φ(t, ·, µin)#µin (4b)

Φ(0, ξ, µin) = ξ, (4c)

with coupling operator

(Kµ)(φ) = ω +

∫
S
g(γ − φ) dµ(γ). (5)

Idea of the Proof for One Population

In order to prove the theorem for the simplified system (4)–(5), we proceed as follows:

1. Aim: W1(S, µt) < εU for all t ≥ 0.
Choose V = B(S, εV ) with εV small
enough (specified later).

2. Choose ξ ∈ S such that W1(δξ, µ
in) < εV .

This is possible by the representation of
the Wasserstein-1 distance (1a).

3. For any ζ > εV , we have∫
(ξ−ζ,ξ+ζ)

dµin > 1− εV
ζ
. (6)

4. Trace particles φ1(t) := Φ(t, ξ − ζ, µin)
and φ2(t) := Φ(t, ξ + ζ, µin).

5. Because particles can never intersect (6)
stays true for all t ≥ 0.

6. For small enough ζ, the phase difference
Ψ(t) := φ2(t)− φ1(t) satisfies

Ψ̇ < −Ψ
g′(0)

2

(
1− εV

ζ

)
+ 2‖f‖∞

εV
ζ
.

7. For small εV
ζ we have Ψ(t) ≤ Ψ(0) for all

t ≥ 0.

8. The Wasserstein-1 distance can estimated
from above by

W1(δφ1(t), µt) ≤ π
εV
ζ

+ 2ζ.

9. Choose both ζ and εV
ζ so small that πεVζ +

2ζ < εU .

Fig. 1: Trapping most mass inside (φ1(t), φ2(t)).

Example

In [3], the author considered networks of M = 3 finite coupled phase oscillator populations
with higher-order interactions. Our results allows to analyze the stability of invariant sets
of these networks in the mean-field limit. By choosing multi-indices r1 = (3, 1), r2 =
(1, 3), r3 = (2, 1) and coupling functions g1(α, φ) = g2(α, φ) = g3(α, φ) := g(α, φ), with

g(α, γ) = h2(γ)−K−h4(α1, γ) + K+h4(α2, γ),

and Lipschitz-continuous functions h2, h4, we can put the mean-field limit of the system from
[3] into our framework. For example Theorem 2 yields the stability of the all-synchronized
state if the function

f (γ) := g(0, γ) = h2(γ) + (K+ −K−)h4(0, γ)

satisfies f ′(0) > 0.
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