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Abstract
Abstract Wiener spaces are in many ways the decisive setting for fundamental results on Gaussian measures: large deviations (Schilder), quasi-invariance (Cameron–Martin), differential calculus
(Malliavin), support description (Stroock–Varadhan), concentration of measure (Fernique),... Analogues of these classical results have been derived in the “enhanced” context of Gaussian
rough paths and, more recently, regularity structures equipped with Gaussian models. The aim of this article is to propose a notion of abstract Wiener model space that encompasses the
aforementioned. More specifically, we focus here on enhanced Schilder type results, Cameron–Martin shifts and Fernique estimates, offering a somewhat unified view on results in [1] and [3].

Singular Stochastic PDEs

Consider a singular stochastic PDE, e.g. the stochastic Allen–Cahn equation

(∂t −∆)︸ ︷︷ ︸
heat operator

ϕ = ϕ− ϕ3︸ ︷︷ ︸
non-linearity

+ ξ︸︷︷︸
space-time
white noise

, ϕ(0, ·) = ϕ0, on [0, T ]× Td . (1)

Given a ϕ0, a solution to (1) is a space-time function depending on the noise realization
ξ(ω). That is, the solution map SC is a non-linear operator on a probability space (E, µ),
where E is a (separable Banach) space of realizations of ξ and µ is the distribution of ξ,
which is a Gaussian measure.

Formally, a space-time white noise ξ = {ξz}z∈[0,T ]×T3 is a family of random variables such
that ξz ⊥ ξz′ if z ̸= z′ and ξz ∼ N (0, 1). As a result, generic realizations of ξ are

(very!) discontinuous. More precisely, ξ ∈ C−d+2
2 −κ

s ([0, T ] × Td) for any κ > 0. Then

via Schauder estimates ϕ ∈ C−d+2
2 −κ+2

s ([0, T ] × Td), which gives Hölder–Besov regularity
−5

2−κ+2 = −1
2 − κ < 0 for d = 3. Thus, the cubic term ϕ3 in (1) does not have canonical

meaning; that is, the SPDE (1) is singular and not classically well-defined. However, (1)
can be given meaning in the context of regularity structures introduced in [2].

Regularity Structures & Admissible Models

For d = 3, due to the irregularity of ξ the classical solution map SC below is discontinuous.
However, it is discontinuous in a very specific way, namely through forming the non-linear
terms in a Picard iteration of the right hand side of (1). The core idea of rough path theory
and later regularity structures is to factor SC through 1) a lift L̂ assigning to a realization
of ξ its non-linearities in the form of rough paths/admissible models, 2) an abstract
solution map SA from a space of models M to a space of abstract solutions Dγ, and 3) a
reconstruction operator R assigning to an abstract solution a concrete solution.
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The space of models M is a non-linear subspace of a Banach space E = ⊕τEτ which is
graded by symbols τ ∈ {Ξ, , , , , , } associated to non-linearities. Due to the
stronger topology on M , the abstract solution map SA is continuous, restoring well-posedness
(in an appropriate sense). However, the lift L̂ (of course) cannot be continuous, but is only
measurable and typically only defined up to a.s. equivalence.

Abstract Wiener Model Space

Definition (Abstract Wiener Model Space).An abstract Wiener model space (AWMS)
is a quintuple ((T ,E, [·],N ), (HHH , ι),µ,L, L̂) consisting of

(1) a separable Banach space E =
⊕

τ∈T Eτ , graded over a finite set T , together with a
”degree” [·] : T → N≥1 and a distinguished subset N ⊆ {τ ∈ T |[τ ] = 1},

(2) a separable Hilbert space HHH together with a continuous (in general non-linear) injection
ι : HHH ↪→ E, called enhanced Cameron–Martin space,

(3) a Borel probability measure µ on E, called enhanced measure, such that µ := (πN )∗µ
is centred Gaussian on E and H := πN (ι(HHH )) is the Cameron–Martin space associated
to µ, where πN : E → ⊕τ∈NEτ denotes the canonical projection,

(4) a continuous lift L : H → E which is a left inverse of πN |ι(HHH ), called H -skeleton lift,

(5) a µ-a.s. equivalence class represented by measurable lifts L̂τ ∈ P (≤[τ ])(E, µ;Eτ), called

full lift, s.t. L̂∗µ = µ and L̂τ = Lτ , where (·) denotes the proxy-restriction.

classical

enhanced HHH ι(HHH ) ⊆ E =
⊕

τ∈T Eτ µ

H

∼ =

E µ

ι

i

L L̂πN L̂∗

Gaussian Measures & Abstract Wiener Spaces

For a Gaussian measure µ on an infinite dimensional space a very interesting phenomenon
occurs: the algebraic data (covariance form) and the analytic data (support) ”detach” from
one another. While the covariance form determines a separable Hilbert space (H , ⟨·, ·⟩H ),
the measure µ is not supported on H , but on a strictly larger (Banach) space E in which
H is contained via a linear injection i. In the case of space-time white noise this is given by

L2([0, T ]× Td)︸ ︷︷ ︸
=H

↪
i−−−→ C−d+2

2 −κ
s ([0, T ]× Td)︸ ︷︷ ︸

=E

. (2)

Such a quadruple (E,H , i, µ) is called abstract Wiener space.

Fundamental Theorems of Gaussian Measures
Let (E,H , i, µ) be an abstract Wiener space. Then the following hold:
Schilder’s Large Deviation Principle: The family (µ(ε−1(·)))ε>0 satisfies a large devia-
tion principle (LDP) on E with speed ε2 and good rate function given by

I (x) =

{
1
2∥x∥

2
H x ∈ H

+∞ else.
(3)

Cameron–Martin (CM) Theorem and Formula: For any x ∈ E the measures µ(·)
and µ(· − x) are equivalent if and only if x ∈ H . Otherwise they are mutually singular.
Malliavin Calculus: The distribution of a (non-linear) Wiener functional Ψ : E → R
has a density with respect to the Lebesgue measure whenever the H -derivative/Malliavin
derivative (not the Fréchet derivative) of Ψ is non-degenerate.
Support Theorem: The topological support of µ in E equals the E-closure of H .
Fernique Estimates: The random variable x 7→ ∥x∥E has Gaussian tails with decay rate
controlled by the values of the H -norm on the unit sphere in E.

Notice that all of these statements involve the properties of the Cameron–Martin space
(H , i) in a central way and those of E only in an auxiliary way. These classical theorems
have their analogues in the ”enhanced” framework of regularity structures. A natural ques-
tion is therefore what an appropriate analogue of (H , i) in that setting is.

Proxy-Restriction

Motivated by examples, one would like to simply define the inclusion of the ”enhanced”
Cameron–Martin space as ι(HHH ) := L̂(H ). However, L̂ is typically only defined up to µ-a.s.
equivalence and µ(H ) = 0 whenever dim(H ) = ∞; i.e. ”the restriction” of L̂ to H is an
ill-defined notion. As it turns out, due to the fact that the lift L̂τ associated to a symbol τ ,
lies in the [τ ]-th inhomogeneous Eτ -valued Wiener–Ito chaos (WIC) P (≤[τ ])(E, µ;Eτ) there
is an appropriate definition of restriction (already considered in [3]):

L̂τ(h) := E
[(

Π[τ ]L̂τ

)
◦ Th

]
, h ∈ H , (4)

where Π[τ ] denotes the projection onto the [τ ]-th homogeneous WIC and Th(x) = x + h

denotes the shift operator on E. In this context we refer to L̂τ as the proxy-restriction.

Key Theorems

Let ((T ,E, [·],N ), (HHH , ι),µ,L, L̂) be an abstract Wiener model space.

Theorem 1 (Schilder LDP for AWMS). The sequence of naturally rescaled measures(
µ
(∑

τ∈T ε−[τ ]πτ(·)
))

ε>0
satisfies a large deviation principle with good rate function

J (x) =

{
1
2∥πN (x)∥

2
H x ∈ ι(HHH )

+∞ else.
(5)

Theorem 2 (Fernique Estimate for AWMS).There exists an η0 > 0 such that

µ (x ∈ E : ∥x ∥E ≥ t) ≲ exp
(
−ηt2

)
, ∀η > η0, t ≥ 0. (6)

Theorem 3 (CM Theorem for AWMS). For any h ∈ H : (L̂ ◦ Th)∗µ ≈ µ and

d(L̂ ◦ Th)∗µ

dµ
(x) = exp

(
⟨h, πN (x)⟩ −

1

2
∥h∥2H

)
. (7)
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