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Abstract

The contact process was introduced by T. E. Harris in [3]. Since then, multiple variants have been studied.
Here: inhomogeneous variants of the contact process and other closely related processes. Inhomogeneous means that instead of parametrizing our process by a single infection rate, we look at
models with multiple infection rates depending on the relative position of a node to the infected node. We will mainly concentrate on the long-range contact process and the inhomogeneous
crabgrass model.
We give a sufficient condition under which the long-range process dies out a.s. and a sufficient condition under which the process in dimension at least 3 survives with positive probability.
The inhomogeneous crabgrass model is a generalization of the model introduced by M. Bramson, R. Durrett, and G. Swindle in [1]. We adapted some of their results for measures other than
the uniform measure.

Generalize contact process

Let Λ ∈ (0,∞) and µ be a probability measure on Zd such that:

µ({0}) = 0

µ({x}) = µ({−x}) for all x ∈ Zd (1)

Let (ηt)t≥0 be a Feller-process that takes values in {0, 1}Zd

(ηt)t≥0 is a generalized contact process with parameter Λ and µ if its generator is given by

Lf (η) =
∑
x∈Zd

η(x) + (1− η(x))Λ
∑
y∈Zd

η(y)µ({x− y})

 (f (ηx)− f (η))

for f ∈ C({0, 1}Zd

) and with

ηx(y) =

{
η(y) if x ̸= y

1− η(y) if x = y
∀x, y ∈ Zd

Construction of the generalized contact process

Model a generalized contact process with parameter Λ and µ using the following indepen-
dent Poisson point processes:

• (Nx(t))t≥0 for x ∈ Z a Poisson point process with rate 1. Call them the cure points of x.

• (Nx,y(t))t≥0 for x, y ∈ Z x ̸= y a Poisson point process with rate Λµ({y − x}). Call
them the infection arrows from x to y.

Given an initial configuration η0 ∈ {0, 1}Zd

, the process evolves such that at any time point
t > 0:

• If for some x ∈ Zd Nx(t) = 1 then ηt(x) = 1.

• If for some x, y ∈ Zd Nx,y(t) = 1 x ̸= y and ηt(x) = 1 then ηt(y) = 1.

•Otherwise, nothing changes.

The question

We say that the long-range contact process (ηt)t≥0 survives with positive probability if

P{0}(ηt ̸= ∅, ∀t ≥ 0) > 0

Otherwise we say that(ηt)t≥0 dies-out a.s.

Lemma 1
Let µ be a probability measure satisfying (1).
There exists Λc(µ) ∈ [0,∞] such that for Λ > 0 and (ηt)t≥0 a generalized contact process
with parameters Λ and µ

Λ > Λc(µ) ⇒ (ηt)t≥0 survives with positive probability

Λ < Λc(µ) ⇒ (ηt)t≥0 dies a.s.

Question

Given a measure µ that satisfies (1), what is Λc(µ) ?

The critical value of the long-range contact processes

A generalized contact process with parameter Λ and µ is a long-range contact process if

∀x, y ∈ Zd ||x||1 = ||y||1 ⇒ µ({x}) = µ({y}) (2)

Let µ be a probability measure on Zd satisfying (2).

Then for all d ≥ 1
Λc(µ) ≥ 1

For d ≥ 3 and with γd the escape probability of the simple random walk in d dimensions:

Λc(µ) ≤
1

2γd − 1

∞∑
k=1

#{y ∈ Zd : ||y||1 = k}
2d

µ({x : ||x||1 = k})

Key point in the proof: the link between the contact process and the escape probability of
random walks shown by D. Griffeath in [2]

Rescaling the contact process

Let (µn)n≥1 be a sequence of measures such that µn is supported on the ball of radius n
(with respect to some norm) satisfying (2) in that same norm.
Let ((ηnt )t≥0)n≥1 a sequence of contact process with parameter Λ > 0 and (µn)n≥1.

The rescaled processes (ζnt )t≥0 are taking values in {0, 1}{k/n:k∈Z
d}. Rescale such that ∀t ≥ 0

and ∀x ∈ Zd

ζnt (x/n) = ηnt (x)

We say that rescaled processes are parametrized by Λ > 0 and the measure sequence (νn)n≥1

with νn the measure on Rd supported on {k/n : k ∈ Zd} such that

νn(A) = µn({a · n : a ∈ A})

Crabgrass model

Let ((ζnt )t≥0)n≥1 a sequence of rescaled contact process parametrized by Λ > 0 and (νn)n≥1

with νn the uniform measure on {k/n : k ∈ Zd \ {0} with ||k/n||∞ ≤ 1}.

Theorem 2 (M. Bramson, R. Durrett, and G. Swindle in [1])
As n → ∞, Λc(νn) → 1. Furthermore,

Λc(νn)− 1 ≈


C/n2/3 d = 1

C log(n)/n2 d = 2

C/nd d ≥ 3

where ≈ means that if C is small then the right-hand side is a lower bound for large n and
if C is big it is an upper bound.

Generalizing the crabgrass model

Let ((ζnt )t≥0)n≥1 a sequence of rescaled contact process parametrized by Λ > 0 and (νn)n≥1

measures supported on {k/n : k ∈ Zd \ {0} with ||k/n||1 ≤ 1}

Theorem 3 (Lower-bound)
Let

m(νn) = min({νn(x) : x ∈ Bn(0) and νn(x) ̸= 0})
For n large enough (such that m(νn) ≤ 0.36) it holds

Λc(νn) ≥ 1 +
1

9
m(νn)

Theorem 4 (Upper-bound)
Assume that the sequence (νn)n≥1 has a weak limit ν∞.
Assuming that ν∞ is atomless and that there is a ρ > 0 and M0 ∈ N such that for all
n ≥ M0 (or n = ∞) we have Q(νn, 1) ≤ 1− ρ where Q(·, ·) is the concentration function.
Then ∀ε ∈ (0, 1/2) there exists an M ε

0 ∈ N such that ∀n ≥ M ε
0

Λc(νn) < 1 + ε
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