
Euclidean -NU C. We assume that  and that  is the Euclidean metric 
on  restricted to . In contrast to the general -NU C problem, we allow the 
balls of a solution to be centered somewhere in the place instead of only in .
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Clustering is a field of combinatorial optimization that concerns itself with grouping data points into different clusters. Usually, one tries to partition the data points into  
clusters, where each cluster has a designated center, determining the radius of the cluster as the maximum distance between the center and any contained point. In the Non-
Uniform -Center (NU C) problem, we are given  different radii with corresponding multiplicities and seek to find the minimum factor with which we can scale the radii such 
that all input points can be covered using the specified number of balls with scaled radius. This problem was introduced in [1], and while it is conjectured that there should be a 
constant factor approximation for -NU C if  is a fixed constant, so far, such algorithms could only be developed for . We study -NU C from different perspectives: 
we consider the problem in the Euclidean setting, providing an algorithm that finds with high probability a solution that uses only few balls more than allowed, which are 
almost optimally scaled. We also discuss the natural linear program modelling -NU C, its integrality gap, and two bicriteria approximation algorithms based on it. Then, we 
focus on the notion of well-separateness: In this setting, we assume that for some radius, only a specific subset of input points is admissible for placing the centers of the 
respective radius, and the inter-point distance in this subset is relatively large. 
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-NU C Problem. The input is an instance , 
where  is a finite metric space, , and  for all 

. We want to cover all points in  by centering up to  balls of radius 
 for all  in , where  is called a dilation factor. The goal is to find 

such placement (yielding a solution) of minimum dilation factor. ( -hard)

t k I = ((X, d), (r1, k1), …, (rt, kt))
(X, d) r1 ≥ … ≥ rt ≥ 0 ki ∈ ℕ

i ∈ [t] X ki
α ⋅ ri i ∈ [t] X α
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Natural LP relaxation. For each point  and , the variable  
describes the share by which the ball  is "open" in a fractional solution 

   s. t.  

p ∈ X i ∈ [t] xp,i
B(p, ri)

Approach inspired by Arora’s TSP 
We may assume without loss of generality that we work with instances for which 
a solution of dilation  exists. It remains to "approximately find" this solution.  
To do this, the plane gets restricted to a square containing all points in . Then, 
we proceed in iterations: in each iteration, the positions and radii of the balls 
from the solution that are "large" in comparison to the length of the current 
square are "guessed" (at an expense of a factor of  in the dilation, we 
install a fine grid in the current square and allow balls to be entered only at grid 
points, making the guessing efficient). After the guessing of the large balls, the 
square gets dissected into four smaller squares, and the process is repeated – 
until we obtain unit squares. The goal of the dissection is to create independent 
smaller squares – in reality, we might need to use more balls than the solution 
does due to the dissection. To make sure that the amount of balls of radius  is 
only  for each , we work with randomized dissections. Using these 
dissections recursively is inspired by Aurora’s famous approach for the Euclidean 
Traveling Salesman Problem [2].
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-NU C with restricted center locations. In this variant, for each  there 
is given a set  of potential centers where balls of radius  may be placed.
t k i ∈ [t]

Yi ⊆ X ri

Metric Balls. Given a metric space , some point , and , the 
ball with radius  centered in  is . A ball  
covers a point  if .

(X, d) c ∈ X r ≥ 0
r c B(c, r) := {p ∈ X ∣ d(c, p) ≤ r} B

p ∈ X p ∈ B

Approximating -NU C. A -approximation algorithm for -NU C is a 
polynomial time algorithm that, given any instance  of -NU C, provides a 
solution of dilation at most , where  denotes the minimum dilation of 
any solution to .
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Formal Definitions Working with Linear Programs (LP)

Integrality Gap. The integrality gap of an Integer Program (IP) and its 
corresponding LP relaxation is the maximum ratio between the optimum value to 
the IP and the optimum value to the LP. Generally, it is a lower bound on the 
approximation ratio obtainable from rounding LP solutions. Unfortunately, the 
integrality gap of the natural LP relaxation of -NU C is unbounded for  as 
can be shown with the following -NU C instance:

t k t ≥ 3
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LPs and Approximation. Many problems in combinatorial optimization can be 
modelled in a natural way by an Integer Program (IP). Considering the 
corresponding LP relaxation is a common strategy in approximating problems: 
Often, one can compute a feasible solution to the LP relaxation and round it in a 
certain way, obtaining a relatively "cheap" solution to the IP.

Bicriteria Approximations. Using the LP, there is a very 
easy -bicriteria approximation algorithm. Using more 
intricate strategies, one can as well obtain a bicriteria 
approximation algorithm opening at most  balls too 
many, dilating them by a factor of at most .
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Bicriteria Approximations for -NU C. A -bicriteria approximation 
algorithm for -NU C is a polynomial time algorithm that provides for each 
instance of -NU C a solution that uses at most  times too many balls of each 
radius type and dilates the radii by a factor of at most .
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Euclidean Setting

Abstract

Well-separateness

An instance is said to be well-separated with respect to some index  if the 
distance between the points in  is sufficiently large; specifically, if 

 for all .
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Handling highly well-separated instances. If an instance of -NU C is well-
separated with respect to all indices (and additionally satisfies a certain condition 
on the radii), we can find a -approximate solution in polynomial time with the 
use of a dynamic program. Moreover, if the instance is well-separated with 
respect to all indices but , it is possible to find a -approximate solution.
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Making instances well-separated. Unfortunately, it is not clear at all how to 
reduce general -NU C instance to instances that are well-separated with 
respect to all indices. However, the literature yields ideas that can be translated 
into the language of well-separation, showing how to make an instance well-
separated with respect to , , and  at the same time. 
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New Approximation for -NU C. Combining the results on how to make 
certain layers of an instance well-separated and on how to handle highly well-
separated instance, we immediately obtain a new approximation algorithm 
based on the notion of well-separation. While the existence of an approximation 
algorithm for -NU C and even -NU C was already known, we hope that the 
collection of tools concerning well-separateness can be enlarged in the future 
and used to develop approximation algorithms for .
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