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Abstract

Tensor triangular geometry provides an abstract framework in which classification problems in the context of tensor triangulated categories can be studied. One of the general goals of this
theory can be described as the attempt to gather ideas and techniques from different areas of mathematics (e.g., algebraic geometry, modular representation theory) and unify them, so that one
obtains statements for general tensor triangulated categories. This is particularly beneficial to develop methods that are only exploited thus far in specific areas. We discuss some core concepts
of tensor triangular geometry in the sense of Balmer [1] with a particular emphasis on its connection to lattice theory and apply them in concrete settings.

Preliminaries |I: Tensor triangulated categories

A tt-category (short for tensor triangulated category) is a triangulated category (K, X0)
equipped with a symmetric monoidal structure such that the symmetric monoidal
product ®: K x K — IC is a triangulated functor in each variable. In addition, for all
objects a € IC, the natural isomorphism ‘0 = (“0y: a ® X(b) = ¥(a ® b))peic turning
a® (—): I — K into a triangulated functor is required to be natural in a € K.

A tt-functor (short for tensor triangulated functor) is a functor between tt-categories
that is both triangulated and (strong) symmetric monoidal.

Examples of essentially small tt-categories: (a) The category of perfect com-
plexes: (Perf(X ),@%X,C’)X) for a qcqgs (short for quasi-compact quasi-separated)
scheme X. In particular, this also covers the affine case (Perf(R),®% R) for a

commutative ring R.
(b) The stable module category: (stmod(kG), ®y, k) for a field k and a finite group G.

Preliminaries |Il: The Hochster dual

A subset Y of a spectral space X is a dual-open subset of X if it is of the form
Y =, Yi for closed subsets Y; C X with quasi-compact complement. The dual-
open subsets of X define a topology on the underlying set of X (in terms of open
subsets); the resulting topological space is again spectral and called the Hochster dual

XV of X. The poset of dual-open subsets of X is denoted Q(X") = (Q(XV), C).

The heart of tt-geometry: The Balmer spectrum

A non-empty full subcategory 7 of IC is called a tt-ideal of /C (short for thick ®-ideal)
if J is a thick subcategory of IC satisfyinga ® 7 € J foralla € K,57 € J. A prime
tt-ideal of /C is a proper tt-ideal P of IC with the property

Va,b € K : (a@bEP:aEPorbEP).

We topologize the set of prime tt-ideals of K, denoted Spc(K), by declaring a subset of
Spc(K) to be closed if (and only if) it is of the form

A):={PeSpc(K)| AnP =0}

If A= {a} for a € IC, we write supp(a) := Z(A) for the support of a. The topological
space Spc(K) is referred to as the Balmer spectrum of /C.

A tt-ideal J of K is a radical tt-ideal if it contains an object a € K, whenever there
exists an integer n > 1 such that a®" = a ® ... ®a € J. The set of all radical tt-
ideals of KC is denoted Zar(K) and called the Zariski frame of /C; it is ordered by inclusion.

for some family A C K of objects.

Remark: Since /C is essentially small, the collection of its tt-ideals forms a set. In
particular, Spc(KC) and Zar(K) are indeed both sets.

Theorem ([1], [2]): (a) The Zariski frame Zar(K) is a coherent frame.

(b) The space Spc(K) is equal to the Hochster dual of the spectral space of A-prime
elements of Zar(KC). In particular, the Balmer spectrum is a spectral space.

(c) Assigning to a tt-functor F': KL — L the spectral map Spc(F'): Spc(L) — Spc(K),
Q — F Q) defines a contravariant functor from the category of essentially small
tt-categories to the category of spectral spaces.

A first example

Let R be a Dedekind ring. For any prime ideal p of R, define the tt-ideals
P, := thick(R/q | q € Spec(R) \ {0,p}) C Perf(R)

of Perf(R); note, by definition, thick(()) = 0. Heavily exploiting properties characteristic
of Dedekind rings (e.g., the structure theorem of finitely generated modules over a
Dedekind ring), we prove that the assignment

Spec(R) — Spc(Perf(R)), p+— Py

Is a well-defined homeomorphism.
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(Classifying) support data

A support datum on /C is a pair (X, o) consisting of a topological space X and an assignment ¢
that associates to each object a of IC a closed subset o(a) of X subject to the following axioms:
(SD1) 0(0) =0 and o(1) = X. (SD4) If a — b — ¢ — Y(a) is a distinguished
(SD2) o(a ®b) = o(a) Ua(b). triangle of /C, then o(a) C o(b) U o(c).
(SD3) o (X(a))= o(a). (SD5) o(a ® b) = o(a) Na(b).

A morphism f ( ;o) — (Y, 7) of support data (on K) is a continuous map f: X — Y such
that o(a) = f~(7(a)) for aII a € K. This gives a category of support data on K, denoted by

Support(/C).

Theorem ([1], [3]): (a) (Spc(KC), supp) is a terminal object of Support(K).
(b) The inclusion-preserving map Zar(KC) — €(Spc(K)¥), J = U cssupp(j) is an order
isomorphism with inverse Y +— {a € K | supp(a) C Y}

(c) The terminal objects of Support(KC) are precisely the classifying support data, that is, support
data (X, o) that have the following properties:

(CSD1) X is a spectral space.
(CSD2) For all a € KC, the open subset X \ o(a) is a quasi-compact space.
(CSD3) The map Zar(K) — Q(XY), T — J;c;0(j) is an order isomorphism.

Examples

Theorem: Together with the cohomological support
supph(F®) := {x c X ‘ F> is not exact} C X for F* € Perf(X),

the underlying space ]X] of the given scheme X forms a classifying support datum on Perf(X).
The assignment

(\X\,supph) = (Spc(Perf(X)),supp), T — {f’ € Perf(X

is the unique isomorphism of support data.
~+ The proof closely follows [2] and uses a reduction to the affine case, Bousfield localization
techniques as well as a deep result from algebraic K-theory.

Define the finitely generated commutative k-algebra H®(G, k) by setting it to H*(G, k)
p=2and @,y H'(G, k) if pis odd. Given a kG- module M, denote I(M) the kernel of
the ring map (—) ®x M : H*(G, k) — Extj (M, M).

) ‘ Fois exact}

Theorem: Together with the support
V(M) =V, (Ig(M)) C Proj(H*(G, k)) for M € stmod(kG),

the projective spectrum Proj(H*(G, k)) forms a classifying support datum on stmod(kG). The
assignment

(Proj (H*(G,k)), VG) o~ (S e (stmod(kG)), supp)
P —> <:M € stmod(kG) | Ia(M) & p}

Is the unique isomorphism of support data.
~> The proof is based on results from [4] and an extension of V to arbitrary kG-modules.
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The structure sheaf

The Balmer spectrum Spc(K) naturally refines to a locally ringed space
Spec(K) := (Spe(K), Ok).

Furthermore, given a tt-functor F': KL — L, the continuous map Spc(F'): Spc(L) — Spc(K)
can be promoted to a morphism of locally ringed spaces.

Theorem ([1], [3]): The isomorphisms from Example (A) and (B) refine to isomorphisms of
locally ringed spaces, that is, X = Spec(Perf(X)) and Proj(H*(G, k)) = Spec(stmod(kG)).



