
On Fundamental Functionals of Convex Geometry:
New, Refined, and Corrected Results

Florian Grundbacher
Technical University of Munich

On Fundamental Functionals of Convex Geometry:
New, Refined, and Corrected Results

Florian Grundbacher
Technical University of Munich

Abstract

One of the most basic, yet most important problems in computational geometry is determining the circumradius of a point set P ⊂ Rn with respect to some container C ⊂ Rn, i.e. computing
R(P,C) := inf{λ ≥ 0 : P ⊂ λC + t, t ∈ Rn}. This problem and its variants give rise to numerous functionals, which form a central topic of study in convex geometry. We analyze the
properties of some of these functionals over the set of convex bodies Cn, i.e. non-empty compact convex subsets of Rn (or Cn

0 for those with the origin in their interior). In particular, we extend
results previously only obtained for symmetric bodies, i.e. bodies C ∈ Cn with −(C − c) = (C − c) for some c ∈ Rn, to general bodies C ∈ Cn and establish connections to its Minkowski
asymmetry s(C) := R(−C,C) and Minkowski centeredness, i.e. when −C ⊂ s(C)C.

Support and Gauge Functions

The support and gauge function of a convex body C ∈ Cn
0 are defined in order by

hC : Rn → [0,∞), hC(a) := max{aTx : x ∈ C},
∥·∥C : Rn → [0,∞), ∥x∥C := min{λ ≥ 0 : x ∈ λC}.

Despite their simplicity, these functions are fundamental tools in many branches of convex
geometry. For example, they encode the important separation theorems in the sense that
two bodies are equal if and only if their support (or gauge) functions coincide. By analyzing
the (local) Lipschitz continuity of ∥·∥C and 0 ̸= x 7→ x

∥x∥C
, we could substantially weaken

the assumptions in this fundamental property:

Theorem 1.The gradients of the support (or gauge) functions of convex bodies K,L ∈ Cn
0

are parallel at all points for which both gradients exist if and only if n = 1 or K and L are
equal up to dilatation.

If in addition to the above for n ≥ 2 the support (or gauge) functions of K and L coincide
at at least one non-zero point, then K and L must already be equal.

Halfspace Lemma

The so-called Halfspace Lemma states the following:

A Euclidean ball C ⊂ Rn contains a body K ⊂ C optimally (i.e. K ̸⊂ λC + t for
any λ ∈ [0, 1), t ∈ Rn) if and only if every closed halfspace with the ball’s center
c in its boundary contains a common relative boundary point of K and C.
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An example of a triangle (orange) optimally
contained in a circle. The Halfspace Lemma
asserts that both closed halfspaces bounded
by the blue line must contain a common rel-
ative boundary point of the triangle and the
circle, here for example v and w.

This property is the basis for numerous results about Eudlidean radii, both of theoretical
and practical nature. Therefore, it is of interest for which other choices of the convex body
C and the point c ∈ C this property remains valid. A result by Klee [3] shows that it, in
fact, characterizes ellipsoids among c-symmetric bodies of dimension at least 3:

Proposition 2. Let C ∈ Cn be c-symmetric for some c ∈ Rn. Then the Halfspace Lemma
is valid for the pair (C, c) if and only if dim(C) ∈ {1, 2} and C is strictly convex (i.e. the
relative boundary of C contains no segments), or dim(C) ≥ 3 and C is an ellipsoid.
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An example of a simplex (orange) optimally
contained in a cube. The halfspace bounded
by the plane which intersects the cube in the
blue hexagon but does not contain the sim-
plex contains no common (relative bound-
ary) points of the simplex and the cube.

Using Theorem 1 (applied to K = C − c and L = c−C), we could extend this character-
ization to all possible choices of C and c, without any symmetry assumptions:

Theorem 3. Let C ∈ Cn and c ∈ Rn. Then the Halfspace Lemma restricted to segments
K ⊂ C is valid for the pair (C, c) if and only if dim(C) = 1 and c ∈ relint(C), or
dim(C) ≥ 2 and C is c-symmetric and strictly convex.

Corollary 4. Let C ∈ Cn and c ∈ Rn. Then the Halfspace Lemma is valid for the pair
(C, c) if and only if dim(C) = 1 and c ∈ relint(C), or dim(C) = 2 and C is c-symmetric
and strictly convex, or dim(C) ≥ 3 and C is a c-symmetric ellipsoid.

Behavior of the Minkowski Asymmetry Under
Polarization

The polar of a convex body C ∈ Cn
0 is defined by

C◦ := {a ∈ Rn : aTx ≤ 1 for all x ∈ C}.
It can be understood as a generalization of the unit ball of a dual space for not necessarily
symmetric gauges instead of norms, as well as of the inversion of numbers to convex bodies.
Much like dual spaces in functional analysis, polar bodies arise as useful tools in certain areas
of convex geometry. Despite the Minkowski asymmetry also arising naturally in many of the
same settings, surprisingly no connections between them have been investigated so far. We
begin to fill this gap with the following result:

Lemma 5. For a Minkowski centered body C ̸= {0}, it holds
s(C◦) ≤ s(C),

with equality if and only if the Halfspace Lemma restricted to K = − 1
s(C)C is valid for the

pair (C, 0), or equivalently if C◦ is Minkowski centered.

This leaves open whether the equality case applies, which is answered by the following:

Theorem 6. If C ∈ Cn is Minkowski centered with s(C) > n − 1, then s(C◦) = s(C).
In contrast, for any s ∈ [1, n − 1] and t ∈ [1, s], there exists a Minkowski centered body
C ∈ Cn with s(C) = s and s(C◦) = t.
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The body C for 1 ≤ t ≤ s ≤ n − 1
can be constructed as follows: Choose some
u ∈ Rn \ {0} and a Minkowski centered
(n − 1)-simplex K ⊂ H(u,0). Then define
C as the convex hull of the union of K + u
(black, top), −1

s(K + u) (orange, bottom),
and −1

s((1− t n
n−1)K + u) (blue, bottom).

Core-, Cylinder-, and Intersection-Radii

The k-th core-, cylinder-, and intersection-radius of K ∈ Cn with respect to C ∈ Cn
0 are for

k ∈ {1, ..., n} defined in order by

Rk(K,C) := max{R(S,C) : S ⊂ K, |S| ≤ k + 1},
Rπ

k(K,C) := max{R(K,C + L⊥) : L is a linear subspace with dim(L) ≤ k},
Rσ

k(K,C) := max{R(K ∩ A,C) : A is an affine subspace with dim(A) ≤ k}.
These different types of radii are sometimes studied for the analysis of or use in (approx-
imation) algorithms for problems e.g. in computer graphics or pattern recognition. There
has been a misconception in the literature [1] that all three radii always coincide, which is
unfortunately not true in general. While the first two radii are indeed always equal, the third
may in certain configurations be larger.

Theorem 7. Let C ∈ Cn
0 , K ∈ Cn, and k ∈ {1, ..., n}. Then

Rk(K,C) = Rπ
k(K,C) ≤ Rσ

k(K,C) ≤ min

{
n

k
,
(s(C) + 1)s(K)

s(K) + 1

}
Rk(K,C).

Rπ
k(K,C) = Rσ

k(K,C) is guaranteed if k ∈ {1, n} or if C is an ellipsoid or a parallelotope,
but can in general fail.
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The parts of the orange square’s relative
boundary inside the body C are dash-
dotted. The square’s vertices are directly
above/below midpoints of some edges of C
(indicated by blue dotted lines). It can be
shown thatR2(K,C) = 1 < 4

3 = Rσ
2 (K,C).
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