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Abstract

The quantum random energy model (QREM) serves as a simple cornerstone and a testing ground, for a number of fields. It is the simplest of all mean-field spin glass models in which quantum
effects due to the presence of a transversal field are studied. Renewed interest in its spectral properties arose recently in connection with quantum annealing algorithms [1,2] and many-body
localisation [4,6]. In our paper [5] we prove Goldschmidt’s formula [3] for the QREM’s free energy. In particular, we verify the location of the first order and the freezing transition in the phase
diagram. The proof avoids replica methods and is based on a combination of variational methods on the one hand, and percolation bounds on large-deviation configurations in combination
with simple spectral bounds on the hypercube’s adjacency matrix on the other hand.

The Quantum Random Energy Model

Configuration space of N spin-1
2 particles: Hamming cube QN = {−1, 1}N

Random Energy Model (Derrida ’80)

U(σ) :=
√
Ng(σ),

with (g(σ))σ i.i.d. process with standard normal law

REM is p→∞-limit of p-spin models (p = 2 : Sherrington-Kirkpatrick)

E[U(σ)] = 0, E[U(σ)U(σ′)] = N

(
1

N

N∑
i=1

σiσ
′
i

)p

Transversal magnetic field taken into account via

(Tψ)(σ) := −
N∑
j=1

ψ(σ1, . . . ,−σj, . . . , σN), ψ ∈ `2(QN) '
N⊗
k=1

C2.

Quantum Random Energy Model

H := U + ΓT,

Γ ≥ 0 strength of magnetic field.

Model for studying quantum effects, e.g. in mean-field spin glasses and quantum annealing
algorithms, and mutation of genotypes in random fitness landscape.

Main Result

Partition function at inverse temperature β ∈ [0,∞): Z(β,Γ) = 2−NTre−βH

Pressure: pN(β,Γ) := N−1 lnZ(β,Γ)

Thermodynamic limit (N →∞): the pressure of the REM converges almost surely

lim
N→∞

pN(β, 0) = pREM(β) =

{
1
2β

2 if β ≤ βc,
1
2β

2
c + (β − βc)βc if β ≤ βc.

Freezing transition at inverse temperature βc =
√

2 ln 2, βc coincides with specific ground
state energy.
Paramagnetic pressure (U = 0): pPAR(βΓ) = ln cosh(βΓ)

Theorem M./W. ’19 For any Γ, β ≥ 0, we have the almost sure convergence

lim
N→∞

pN(β,Γ) = max{pREM(β), pPAR(βΓ)}

Goldschmidt calculated the limit of the pressure via the (non-rigorous) replica method and
static approximation in path-integral representation of E[Z(β,Γ)n].

First-order phase transition found at Γc(β) = β−1arcosh(exp(pREM(β)))
Γ < Γc(β): freezing transition unchanged at β = βc
Γ > Γc(β): magnetization in the x-direction equals tanh(βΓ) > 0

Sketch of the Proof

Basic idea: prove pair of asymptotically coinciding upper and lower bound for pN(β,Γ).

1. Lower bound: Based on Gibbs variational principle

ln Tre−βH = − inf
ρ density matrix

[βTr(Hρ) + Tr(ρ ln ρ)].

Pick REM Gibbs state ρ = e−βU/Tre−βU and paramagnetic Gibbs state ρ = e−βΓT/Tre−βΓT :

pN(β,Γ)− pREM(β) ≥ − β
N

TrTe−βU

Tre−βU
= 0

pN(β,Γ)− pPAR(βΓ) ≥ − β
N

TrUe−βΓT

Tre−βΓT
= − β

2N
√
N

∑
σ

g(σ) = O
(

1√
N2N

)

⇒ lim inf
N→∞

pN(β,Γ) ≥ max{pREM(β), pPAR(βΓ)} almost surely

2. Upper bound: Consider for ε > 0 large deviation set

Lε := {σ ∈ QN |U(σ) ≤ −εN}
Subset Cε ⊂ Lε called edge-connected ⇔ pair σ, σ′ ∈ Cε
connected through an edge-path of adjacent edges.
Decompose Lε =

⋃
αC

α
ε into maximal edge-connected

subsets Cα
ε .

For any ε > 0, the set Lε does not percolate, i.e. there exists
a subset Ωε,N of realizations such that:

1.P(Ωε,N) ≥ 1− e−cεN for some cε > 0

2. on Ωε,N : maxα |Cα
ε | < Kε = d4 ln 2

ε2 e
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Decomposition of the Hamiltonian

H =: ULε ⊕HLcε − ΓALε

ULε and HLcε restrictions of corresponding operators and ALε is remainder term with matrix
elements

〈σ|ALε|σ′〉 =

{
1 if σ ∈ Lε or σ′ ∈ Lε and d(σ, σ′) = 1,

0 else.

Upper bound for the operator norm: ‖ALε‖ ≤
√

2N maxα |Cα
ε |

To conclude the upper bound, pick some ε > 0. The Golden-Thompson inequality yields

Z(β,Γ) ≤ 2−NeβΓ‖ALε‖
(

Tr`2(Lε)e
−βULε + Tr`2(Lcε)e

−βHLcε
)

First term in the bracket: bounded by Z(β, 0)
Second term: all matrix elements of −T are positive, this leads to the bound

Tr`2(Lcε)e
−βHLcε ≤ eβεNTre−βΓT

On Ωε,N we thus get the following bound for all N large enough,

pN(β,Γ) ≤ max{pN(β, 0), pPAR(βΓ)} + 2βε.

A Borel-Cantelli argument implies:

lim sup
N→∞

pN(β,Γ) ≤ max{pREM(β), pPAR(βΓ)} almost surely
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