

Wulff-Kristalle als asymptotisch optimale atomare Konfigurationen auf dem FCC- und HCP-Gitter

Julia Marie Meßthaler Technische Universität München & Universität Augsburg

Abstract

In dieser Arbeit werden die asymptotische Energieminimierung diskreter atomarer Systeme auf den Gitterstrukturen des Face-Centered Cubic (FCC)- und des Hexagonal Closed-Packed (HCP)-Gitters untersucht. Ausgehend von der Oberflächenenergiedichte werden die zugehörigen Wulff-Mengen bestimmt und als eindeutige Minimierer identifiziert. Hauptresultat ist die Aussage, dass der FCC-Wulff-Kristall im Grenzfall unter allen Konfigurationen die skalierte Gesamtenergie minimiert und somit energetisch optimal ist. Auch in endlichen FCC-Konfigurationen tritt dieselbe Oktaederstumpf-Struktur auf. Die Analyse stützt sich auf Methoden von Cicalese-Kreutz-Leonardi [1], die in diesem Kontext erweitert und präzisiert werden. Es werden zudem zentrale Strukturund Nachbarschaftseigenschaften zweidimensionaler Voronoi-Zellen in periodischen Gittern analysiert. Die Ergebnisse leisten einen Beitrag zur mathematischen Theorie der Energieminimierung diskreter atomarer Systeme und vertiefen das Verständnis der geometrischen Struktur von Wulff-Kristallen auf FCC-Gittern ($\mathcal{L}_{ ext{FCC}}$) und HCP-Gittern ($\mathcal{L}_{ ext{HCP}}$).

Gitterstrukturen

FCC- (Face-Centered Cubic) und HCP- (Hexagonal Closed-Packed) Gitter realisieren die dichteste Kugelpackung mit maximaler Packungsdichte von ca. 74% und Koordinationszahl 12. \mathcal{L}_{FCC} besitzt eine ABC-Stapelfolge (kubisch), \mathcal{L}_{HCP} eine AB-Stapelfolge (hexagonal).

FCC:
$$\mathcal{L}_{FCC} = \{n_1b_1 + n_2b_2 + n_3b_3 : n_i \in \mathbb{Z}\}, b_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, b_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, b_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

HCP: $\mathcal{L}_{HCP} = \operatorname{span}_{\mathbb{Z}} \{e_1, e_2, e_3\} \cup (\operatorname{span}_{\mathbb{Z}} \{e_1, e_2, e_3\} + v_1),$ wobei $e_1=(1,0,0)^\intercal$, $e_2=\frac{1}{2}\left(1,\sqrt{3},0\right)^\intercal$, $e_3=\frac{2}{3}\sqrt{6}\left(0,0,1\right)^\intercal$, $v_1=\frac{1}{3}(e_1+e_2)+\frac{1}{2}e_3$.

Wulff-Mengen und Energie

Das Gleichgewichtsproblem für Kristalle wird durch Minimierung der Oberflächenenergie bei konstantem Volumen beschrieben. Im isotropen Fall ist die Kugel Minimierer; bei anisotroper Oberflächenenergiedichte (abhängig von Orientierung), ist die Lösung die sog. Wulff-Menge. **Lokalisierte Konfigurationsenergie:** Für eine endliche Konfiguration $X\subset\mathcal{L}_{\mathrm{FCC}}$ und $A\subset\mathbb{R}^3$ und mit $c(x,y):=\chi_{\mathcal{N}_{\mathsf{FCC}}(x)}(y)$ definieren wir:

$$E_{\mathcal{L}_{FCC}}(X, A) = \frac{1}{2} \sum_{x \in \mathcal{L}_{FCC} \cap A} \sum_{y \in \mathcal{L}_{FCC}} c(x, y) |\chi_X(y) - \chi_X(x)|.$$

Identifiziert man $X\subset\epsilon$ $\mathcal{L}_{\mathsf{FCC}}$ mit seinem zugehörigen empirischen Maß, so kann man die Energie auf nicht-negativen Radon-Maßen, abgekürzt $\mathcal{M}_+(\mathbb{R}^3)$, definieren:

$$E_{\mathcal{L}_{\mathsf{FCC}},\epsilon}(\mu) := \begin{cases} \epsilon^2 \sum_{x \in X} \# \big(\mathcal{N}_{\mathsf{FCC},\epsilon}(x) \backslash X \big), & \mu = \mu_{\epsilon} := \epsilon^3 \sum_{x \in X} \delta_x, \ X \subset \epsilon \mathcal{L}_{\mathsf{FCC}}, \\ +\infty & \mathsf{sonst.} \end{cases}$$

Homogenisierte Oberflächenenergie: $\phi_{\mathcal{L}_{FCC}}(v) = \lim_{T \to \infty} \frac{1}{T^2} \inf\{E_{\mathcal{L}_{FCC}}(X, Q_T^v)\},$ liefert die anisotrope Oberflächenenergiedichte in Richtung $v \in \mathbb{S}^2$.

Wulff-Menge: Für eine konvexe, positiv homogene Funktion ϕ vom Grad 1:

$$W_{\phi} = \{ \xi \in \mathbb{R}^n : \phi^{\circ}(\xi) \leq 1 \}, \quad \phi^{\circ}(\xi) = \sup_{\nu \in \mathbb{S}^{n-1}} \frac{\langle \nu, \xi \rangle}{\phi(\nu)}.$$

 W_{ϕ} ist der eindeutige Minimierer der anisotropen isoperimetrischen Ungleichung.

Hauptaussage: Für $\varepsilon \to 0$ gilt die Γ -Konvergenz

$$E_{\mathcal{L}_{ ext{FCC}},arepsilon}(\mu) \stackrel{\Gamma}{ o} E_{\mathcal{L}_{ ext{FCC}}}(\mu) = \int_{\partial^* V} \phi_{\mathcal{L}_{ ext{FCC}}}(
u) \, d\mathcal{H}^2$$

Die eindeutigen Minimierer des Grenzfunktionals sind (bis auf Translation und Skalierung) die FCC-Wulff-Kristalle; damit sind sie asymptotisch energetisch optimal.

Wulff-Kristall des FCC- und HCP-Gitters

FCC-Gitter: Die homogenisierte Oberflächenenergiedichte ist

 $\phi_{FCC}(\nu) = |\nu_1 + \nu_2| + |\nu_1 + \nu_3| + |\nu_2 + \nu_3| + |\nu_1 - \nu_2| + |\nu_1 - \nu_3| + |\nu_2 - \nu_3|$

mit dualer Norm $\phi_{FCC}^{\circ}(\xi) = \max \{ \frac{1}{4} \|\xi\|_{\infty}, \frac{1}{6} \|\xi\|_{1} \}.$

Die Wulff-Menge W_{FCC} ist ein Oktaederstumpf, für den gilt

$$|W_{\text{FCC}}|^{-2/3} \int_{\partial^* W_{\text{FCC}}} \phi_{\text{FCC}}(\nu) d\mathcal{H}^2 = 3 \cdot 2^{2/3} \cdot 64^{1/3}.$$

HCP-Gitter: Die Oberflächenenergiedichte lautet

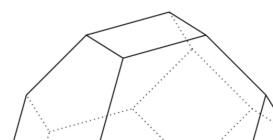
$$\phi_{\text{HCP}}(v) = \sqrt{2} \left(|\langle e_1, v \rangle| + |\langle e_2, v \rangle| + |\langle e_1 - e_2, v \rangle| \right) + \frac{1}{\sqrt{2}} |\langle e_3, v \rangle|$$
$$+ \sqrt{2} \max\{ |\langle e_1, v \rangle|, |\langle e_2, v \rangle|, |\langle e_3, v \rangle|, |\langle e_1 - e_2, v \rangle| \}$$

mit dualer Norm $\phi_{\text{HCP}}^{\circ}(\xi) = \max \left\{ \frac{2}{7\sqrt{2}} (|\zeta_1| + \frac{1}{\sqrt{3}}|\zeta_2| + \frac{3}{2\sqrt{6}}|\zeta_3|), \frac{1}{2\sqrt{3}}|\zeta_3|, \right.$

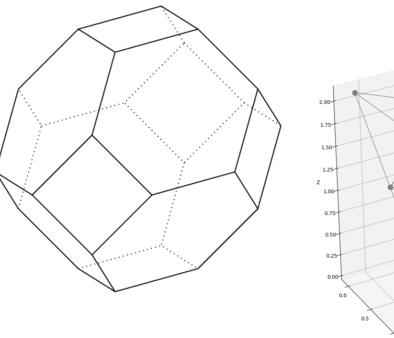
$$\frac{2}{3\sqrt{6}}|\zeta_2|, \frac{4}{7\sqrt{6}}|\zeta_2| + \frac{3}{14\sqrt{3}}|\zeta_3|, \frac{1}{3\sqrt{2}}(|\zeta_1| + \frac{1}{\sqrt{3}}|\zeta_2|)$$
.

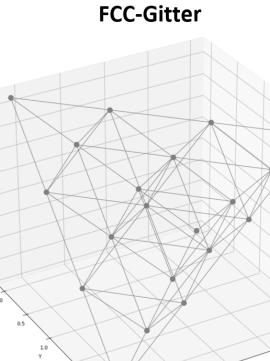
 $W_{\rm HCP}$ ist ein hexagonaler Doppelpyramidenstumpf, für den gilt

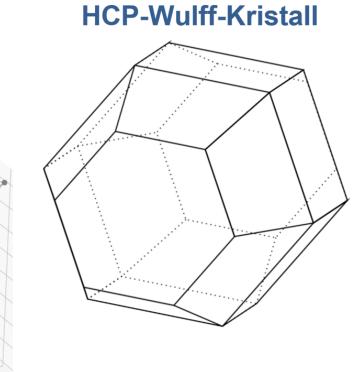
$$|W_{\text{HCP}}|^{-2/3} \int_{\partial^* W_{\text{HCP}}} \phi_{\text{HCP}}(v) d\mathcal{H}^2 = 3 \cdot 2^{2/3} \cdot 65^{1/3}.$$

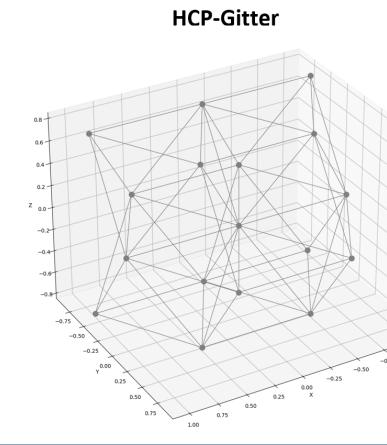


FCC-Wulff-Kristall









Beweis des Haupttheorems

Ziel: Beweis der Γ -Konvergenz des diskreten Energie-Funktionals und Nachweis, dass der FCC-Wulff-Kristall asymptotisch energetisch optimal ist.

- **1. Zulässige Punktmengen:** Periodische Mengen $\Sigma \subset \mathbb{R}^3$, mit folgenden Bedingungen:
 - Mindestabstand: $||x y|| \ge r > 0$ für $x \ne y \in \Sigma$.
 - Dichtheit: Jede Kugel $B_R(x)$ enthält mindestens einen Punkt aus Σ .
- 2. Geometrie der Voronoi-Zellen: Die Voronoi-Zellen $\mathcal{V}(x)$ sind konvexe Polyeder, sie definieren die Nachbarschaft über gemeinsame Zellflächen:

$$\mathcal{N}\mathcal{N}(\Sigma) := \{(x,y) \in \Sigma \times \Sigma : \mathcal{H}^{n-1}(\mathcal{V}(x) \cap \mathcal{V}(y)) > 0\}.$$

Wir setzen $\mathcal{N}\mathcal{N}(x) = \{y \in \Sigma : (x,y) \in \mathcal{N}\mathcal{N}(\Sigma)\}.$

Im FCC-Gitter: $\mathcal{N}\mathcal{N}(x) = \mathcal{N}_{FCC}(x)$.

3. Diskretes Energie-Funktional: Für $X \subset \Sigma_{\varepsilon}$, $A \subset \mathbb{R}^3$ offen:

$$F_{\varepsilon}(X,A) = \frac{1}{2} \sum_{x \in \Sigma_{\varepsilon} \cap A} \sum_{y \in \Sigma_{\varepsilon}} c(x,y) |\chi_X(y) - \chi_X(x)|.$$

Dabei modelliert c(x,y) die Wechselwirkung zwischen Nachbarn.

4. **□-Konvergenz und Limesfunktional:**

$$F_{\varepsilon} \xrightarrow{\Gamma} F_{\text{hom}}(\rho \, \chi_W) = \int_{\partial^* W} \phi(v) \, d\mathcal{H}^2,$$

wobei ϕ homogenisierte Oberflächenenergiedichte und W zugehörige Wulff-Menge ist.

Das FCC-Gitter erfüllt die Bedingungen (L1) und (L2); der FCC-Wulff-Kristall minimiert F_{hom} und ist somit asymptotisch energetisch optimal.

Diskrete FCC-Wulff-Kristalle

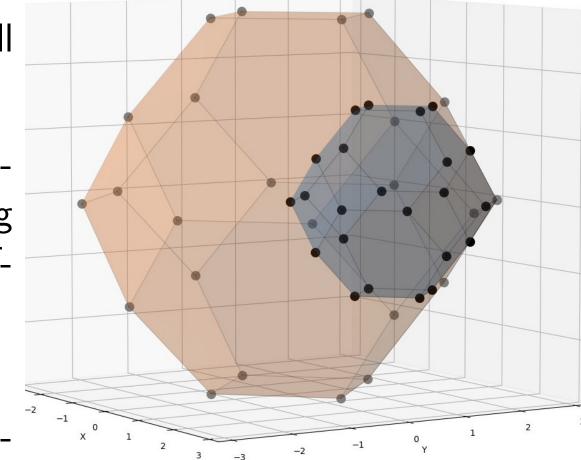
Auch für endliche FCC-Konfigurationen bildet sich dieselbe Oktaederstumpf-Struktur wie im kontinuierlichen Fall. Für Seitenlänge $n \in \mathbb{N}$ umfasst der Kristall

$$a = 16n^3 + 15n^2 + 6n + 1$$

Diese Zahl ergibt sich durch Schichtanalyse entlang einer Koordinatenachse unter Auswertung der symmetrischen Struktur. Solche diskreten Wulff-Kristalle minimieren das Funktional

$$E_{\mathcal{L}_{\mathsf{FCC}}}(X,\mathbb{R}^3)$$

für gegebene Atomanzahl exakt und liefern die Grundlage für asymptotische Energieschätzungen und Fluktuationsanalysen.



Wulff-Kristalle (Seitenlängen 1 und 2)

Beobachtungen zu Voronoi-Zellen

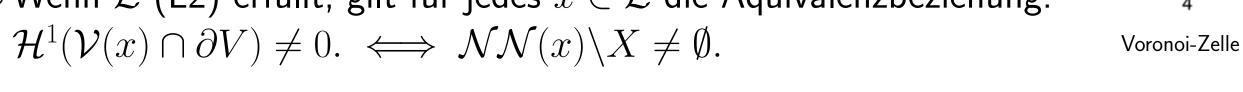
Für ein periodisches Gitter $\mathcal{L}\subseteq\mathbb{R}^2$ definieren wir die **Voronoi-Zellen** $\mathcal{V}(x)$ für jedes $x\in\mathcal{L}$ als

$$\mathcal{V}(x) := \left\{ y \in \mathbb{R}^2 : |x - y| \le |z - y| \ \forall z \in \mathcal{L} \right\}.$$

Dies ist ein konvexes, abgeschlossenes Polyeder unter (L1) und (L2).

Eigenschaften:

- \circ Wenn \mathcal{L} (L1) erfüllt, ist jede Voronoi-Zelle beschränkt.
- \circ Wenn \mathcal{L} (L2) erfüllt, ist $\mathcal{V}(x)$ ein Polyeder für alle $x \in \mathcal{L}$.
- \circ Wenn \mathcal{L} (L2) erfüllt und wenn $\mathcal{V}(x) \cap \mathcal{V}(y) \neq \emptyset$, dann haben $\mathcal{V}(x)$ und $\mathcal{V}(y)$ entweder eine Ecke oder eine Kante gemeinsam.
- \circ Wenn \mathcal{L} (L2) erfüllt, gilt für jedes $x \in \mathcal{L}$ die Äquivalenzbeziehung:



Konsequenzen:

Wenn \mathcal{L} (L1) und (L2) erfüllt, schneidet $\mathcal{V}(x)$ für jedes $x \in \mathcal{L}$ nur endlich viele andere Voronoi-Zellen.

Literatur:

[1] M. Cicalese, L. Kreutz, G. P. Leonardi: *Emergence of Wulff-Crystals from Atomistic* Systems on the FCC and HCP Lattices. Communications in Mathematical Physics, 402 (2023), 2931–2978. DOI: 10.1007/s00220-023-04788-5