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Reinforced Random Walks

We are interested in edge-reinforced random walks. In the basic setting, there is
one random walker on a graph and the initial edge weights are 1. The walker then
moves at discrete time steps and chooses the edge to traverse with probability pro-
portional to the current edge weight. If an edge is traversed, its weight is increased
by 1. This is called the linearly edge-reinforced random walk (LERRW).
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2 Walkers on 3 Nodes

Consider the LERRW on a graph consisting of a 3-node segment. We now look
at two walkers which both influence the edge weights. At every time step, the
walker to move is chosen uniformly at random.
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Edge weights at time n are denoted by w (n, ·), positions of the walkers at time n
by X(·)

n . Here, both walkers are in the central node 0, which is also their starting
position. We look at the following quantities:

τ0 := 0 τn := inf
{

k > τn−1 : X(1)
k = X(2)

k = 0
}

Fn :=
w (n, 0)

w (n, 0) + w (n, 1)
Mn :=

w (τn, 0)
w (τn, 0) + w (τn, 1)

= Fτn

Theorem 1 The random variables Mn, n ≥ 0 form a martingale. Fn converges
almost surely for n→ ∞, and the limit is identical to the limit of Mn.

Remark Note the similarity to the case with a single walker where the edge
weights behave as the balls in a standard Pólya urn where two balls of the drawn
color are added to the urn at every step. J

Proof Idea In order to show the martingale property, look at

Ea,b,l := E
[
Mn+1 · 1{τn+1−τn=2l}

∣∣ w (τn, 0) = a, w (τn, 1) = b
]

Consider all possible paths of length 2l which the two walkers could take, and
which end with both walkers meeting in the center at time 2l without having met
in the center before. These paths can be extended to obtain all paths of length
2 (l + 1) with the same properties. This extension leads to a recursive formula
allowing the calculation of Ea,b,l. It then follows that the Mn form a martingale.
The convergence of Fn follows by a Borel-Cantelli argument from the convergence
of Mn.

Conjecture 2 Define Y := limn→∞ Fn = limn→∞ Mn. Then Y ∈ [0, 1] has a
density w.r.t. the Lebesgue measure on [0, 1]. Y is not Beta-distributed.

Additive Bias

We can add a bias to the LERRW on Z by making the probability to go to the right
proportional to λ plus the edge weight where λ > 0 is a parameter.
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Theorem 3 The walk with additive bias λ is recurrent for 0 ≤ λ ≤ 1 and
transient for λ > 1. It has positive speed, if, and only if, λ > 3. If this is the
case, then Xn

n →
λ−3
λ+1 almost surely. Otherwise, Xn

n → 0 almost surely.

k Walkers on Z

Consider k walkers on the graph Z, where the walker to move is chosen uni-
formly at random at every step. We now (almost) only require that the weight
of an edge is increased by an arbitrary amount (not necessarily 1) upon traversal,
and that all but finitely many initial edge weights are 1.
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We say that one of the walkers is recurrent if he visits every node of Z infinitely
often, and we say that he has finite range if he only visits finitely many nodes.

Theorem 4 The edge-reinforced random walk with k walkers on Z satisfies:

P
[
∀m : X(m) is recurrent

]
+ P

[
∀m : X(m) has finite range

]
= 1

Remark Again, note the similarity to the case with a single walker: depending
on the reinforcement scheme, the walker is either recurrent or does have finite
range. We did not prove it yet, but we conjecture that, given a certain reinforce-
ment scheme, a single walker has finite range if, and only if, any finite number of
walkers does have finite range with the same reinforcement scheme. J

Proof Idea Let τ(m) := inf
{

n ≥ 0 : X(m)
n ≤ 0

}
. We will look at the quantity

M(m)
n :=

X(m)

n∧τ(m)−1

∑
i=0

1
w
(
n ∧ τ(m), i

)
M(m)

n sums up the inverse edge weights from 0 to the position of the m-th walker
at time n, as long as the walker is to the right of 0. We can show that M(m)

n is
a nonnegative supermartingale. We can add a nonnegative random variable to
obtain a martingale which converges by the martingale convergence theorem.
Using that the value of the martingale changes by a fixed amount if a certain
event occurs (which can therefore only happen finitely often by convergence), it
is possible to show that every walker either returns to 0 or visits only finitely
many nodes which have not been visited before by any other walker.
Using this, we can then show that either every node of Z is visited infinitely
often by at least one of the walkers or all walkers have finite range. The final step
consists in showing that any two walkers meeting infinitely often are either both
recurrent or do both have finite range, which results in a proof of the theorem.

Multiplicative Bias

We can add a bias to the LERRW on Z by making the probability to go to the right
proportional to λ times the edge weight where λ > 0 is a parameter.

j− 1 j j + 1

Xn = j

w (n, j− 1) w (n, j)

P [Xn+1 = j + 1] ∝ λ · w (n, j)P [Xn+1 = j− 1] ∝ w (n, j− 1)

Theorem 5 Consider the walk with multiplicative bias λ ∈ Q>0. If j ∈ Z is
visited infinitely often and λ > 1, then λw(n,j)

w(n,j−1)+λw(n,j) → 1 almost surely.

Lemma 6 If the walk with multiplicative bias λ visits at least one node
infinitely often, then all nodes are visited infinitely often almost surely.

Conjecture 7 The walk with multiplicative bias λ is transient for λ 6= 1.
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