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Lattices in Rn

A set Λ ⊂ Rn is called a Lattice, if it has the following properties.
�Λ is a group with respect to vector addition, meaning that:

–Λ contains the origin

– If x, y ∈ Λ, then x + y ∈ Λ

– If x ∈ Λ, then −x ∈ Λ

�Λ is discrete, meaning that for each x ∈ Λ, there is an ε > 0 such that the ball with radius
ε and center x only intersects Λ in x

�Λ is fulldimensional, meaning that the linear hull of Λ is Rn

A useful property of lattices is that every n-dimensional lattice can be mapped onto the
integer lattice Zn using a bijective linear map. This allows us to generalize many results that
we obtain on the integer lattice to general lattices.

Lattice Width

The dual lattice Λ∗ of a lattice Λ ⊂ Rn is defined as the set {x ∈ Rn : xTy ∈ Z for all y ∈
Λ}. Particularly, Zn is its own dual lattice. The lattice width of a convex body K ⊂ Rn

with respect to the lattice Λ is then calculated as

lw(K) := min
v∈Λ∗\{0}

{max
x∈K

vTx−min
x∈K

vTx}.

One way to visually grasp this concept is to measure the minimum number of parallel layers
in the lattice that are sufficient to cover K.

An Example for Lattice Width

Figure 1: A triangle embedded in R2

that has lattice width 1.5 with respect
to Z2. Note that if one chooses any
other direction for parallel lattice lines
to dissect R2 into layers, the triangle
will cover more than 1.5 of these layers.

Lattice Freeness

A convex body K ⊂ Rn is called lattice-free with respect to the lattice Λ, if the interior of
K does not contain any lattice points of Λ. In particular, if the feasible region of a system of
linear inequalities is lattice-free with respect to Zn and one tightens the bounds of all linear
inequalities by an arbitrarily small amount, it follows that the system has no integer solutions.
Due to this relation, the concept of lattice-freeness has numerous applications in the field of
discrete optimization.

History of the Flatness Constant

In 1948, Khinchine proved the following statement known as the Flatness Theorem:

For any dimension n, there is a fixed value Flt(n) such that
any lattice-free convex body K has lattice width less or equal to Flt(n).

The value Flt(n) is called the Flatness Constant in dimension n. Note that we didn’t specify
the lattice, since this statement holds (and the Flatness Constant is the same) for any lattice
Λ ⊂ Rn.
The precise value of the Flatness Constant is still unknown. Important milestones for improv-
ing the upper bound include:

� Flt(n) ≤ (n + 1)!, the initial bound, found by Khinchine

� Flt(n) ≤ n5/2, the first polynomial bound, found by Lagarias, Lenstra and Schnorr

� Flt(n) ≤ O(n log3(2n)), the currently best known bound, found by Reis and Rothvoß

Flatness constant in dimension 2

We say that a lattice-free body is a maximal lattice-free body , if it is not strictly contained
in any lattice-free body. A result by Lovász states that any maximal lattice-free body K has
the following properties:

�K is a polytope with 2n or less facets

�Each facet of K contains at least one lattice point in its relative interior

In the 2-dimensional case, this allows us to restrict ourselves to triangles and quadrilaterals.
In 1989, Hurkens proved that lattice-free quadrilaterals have lattice width at most 2, and
lattice-free triangles have lattice width less or equal to 1 + 2√

3
. By giving an explicit

construction for a lattice-free triangle which achieves this lattice width, it is proven that
Flt(2) = 1 + 2√

3
.

Figure 2: The (up to symmetry) unique
maximizer for lattice width in dimension 2,
and a visualization of a possible direction
along which the triangle attains its lattice
width.

Lower Bounds on the Flatness Constant

The trivial lower bound to the Flatness Constant is Flt(n) ≥ n. To see this, note that
scaling the n-dimensional unit simplex by the factor n results in a lattice-free body with
lattice width n.
In general, any body K ∈ Rn with lattice width ∆ can be extended to a body K∗ ∈ Rnm

with lattice width m ·∆ by first translating K to achieve 0 ∈ K and then setting

K∗ =

{
(λ1x1, . . . , λmxm) ⊂ Rnm |

m∑
i=1

λi = 1;λ1, . . . , λm ≥ 0;x1, . . . , xm ∈ m ·K

}
.

Therefore, any lattice-free body K ⊂ Rn that gives a new highest known value to lw(K)/n
provides a new asymptotical lower bound for the Flatness Constant in high dimensions.
Codenotti and Santos first mentioned a 3-dimensional body with lattice width 2+

√
2, which,

using this technique, provides the asymptotical lower bound Flt(n) ≥ 2+
√

2
3 · n ≈ 1.138 · n.

A construction by Mayrhofer, S. and Weltge yields a sequence of n-dimensional lattice-free
simplices ∆n for n ∈ N that achieve lw(∆n)→ 2n for n→∞.
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