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Abstract

In the ongoing search for quantum-safe cryptography, isogenies between elliptic curves have received heightened attention as a possible foundation for modern cryptographic protocols. The
first natural question hence is when two elliptic curves over a finite field are isogenous, i.e. when one can find an isogeny between two such elliptic curves, and this question finds a strikingly
simple and efficiently computable answer in Tate's isogeny theorem. For efficiency, however, one would like to work with “small” isogenies only - luckily, this is possible in the special class of

supersingular elliptic curves via the so-called supersingular isogeny graph.

Notation

Preliminary Il: Isogenies

We fix a finite field k& of characteristic p and order ¢, so that p € N is a prime and ¢
is a power of p; for simplicity we assume p > 5. Furthermore we let / € N denote a
prime and write k£ for a fixed algebraic closure of k.

A k-isogeny ¢: IF — E’' between two elliptic curves over k is a map given by rational functions
with coefficients in k& that is not constant and maps the neutral element of £ to the neutral
element of £’. Such a map is automatically a surjective group homomorphism with a finite kernel,
and we can associate to it the dual isogeny

¢: B'— F,
allowing us to consider the equivalence relation of elliptic curves over k being k-isogenous. More-
over, we can define the degree of ¢ as the field extension degree

deg ¢ = [k(E) : ¢"k(E")

of the induced function field extension, and this degree can roughly be understood as the size of

Preliminary |: Elliptic curves

An elliptic curve E over k is a projective variety given by a homogeneous equation
Y°Z =X+ aXZ*+ b2

where a, b € k satisfy 4a’ + 27b° # 0. Via the dehomogenization x =

identify £/ with the set

2
{(z,y) €k :y*=2° +ax + b} U{O},
where the point at infinity O corresponds to the unique projective solution
0:1:0]

of the curve equation with Z = 0. Similarly we can also identify the k-rational points

E(k) of E with the set
{(z,y) €k’ y* =2° +ax + b} U{O}.

Note that the elliptic curve £ carries an Abelian group law given by the simple rule
that the three intersection points of any line with the curve add up to the point at
infinity, which acts as the neutral element of the group.

the isogeny.
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Example: Multiplication-by-m isogeny

For any elliptic curve E over k and m € Z \ {0} we can always consider the multiplication-by-m

Isogeny

m|: E—FE, P—m-P
given by taking the m-fold sum of the input point. The subgroup of m-torsion points E|m| of E
is defined as the kernel of |m], i.e.

E|m| = ker|m].

Tate's i1sogeny theorem

Two elliptic curves E, E’ over k are k-isogenous if and only if they have the same number of k-rational points, i.e. #E (k) = #E'(k). This result follows from a stronger theorem that is also
due to Tate and generalizes to Abelian varieties, which can be understood as higher-dimensional analogues of elliptic curves. Interestingly, even when proving the statement only for elliptic
curves, one crucial reduction step requires consideration of the product variety £ x E’ and hence naturally leads to the setting of Abelian varieties. To prove Tate's theorem in either case,
many tools from algebraic number theory, representation theory, topology, category theory and algebraic geometry are required - below we highlight just one of them.

Inverse limits

Roughly speaking, inverse limits provide a way to understand infinite algebraic structures via a backwards step-by-step progression of corresponding finite structures along a directed index set.
In the proof of Tate's theorem, the following three inverse limits play crucial roles:

1. The absolute Galois group Gal(k|k) is the inverse limit of the Galois groups of finite extensions F'|k with F' C k, ordered by inclusion, via the canonical restriction maps.

2. The ring of (-adic integers Zy is the inverse limit of the finite rings {Z/{"Z},cn with respect to the canonical reduction maps Z /("7 — 7./¢"7 for m > n.

ne (integral) (-adic Tate module T;(E) of an elliptic curve E over k is the inverse limit of the torsion groups { E'[("|},en under the multiplication maps [("~"]: E[{™] — E[{"]| for m > n.

N b RN/

The supersingular isogeny graph

Supersingular elliptic curves

An elliptic curve E over k is called supersingular if #FE(k) = 1 mod p, and
it is called ordinary otherwise. In view of Tate's isogeny theorem and the
well-known Hasse bound

#E(k)—q—1| <2/q,

a straightforward case distinction shows that any two supersingular elliptic
curves over k are isogenous over a finite extension of k. However, an even
stronger result holds.

We assume ¢ # p. The supersingular isogeny graph QS(E?, ¢) has as vertices the isomorphism classes of su-
persingular elliptic curves that are defined over some finite field of characteristic p, and edges corresponding
(up to an equivalence relation) to degree ¢ isogenies between representatives of the isomorphism classes.
With some deep results from the theory of quadratic forms and lattices or from the theory of modular
forms, one can prove that the supersingular isogeny graph QS(E?, ¢) is connected, i.e. we can find between
any two supersingular elliptic curves over a finite field an isogeny (possibly defined over an extension field)
of /-power degree. Moreover, any such isogeny can be expressed as a composition of degree ¢ isogenies.
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