
Notfall: 089-289-112 PW: "TUMVorkurs 25" Kap. 2 Mensen Menge: Zusammenfamus mark. Objekte zu einem never mark Objekt 1st a ein Element der Menze A, so schreibt man a EA. a & A bedentet - a & A (= - (a & A) Beispiele: A = {1, 12, 17, -109} hat 4 Elemente · Die Reihensolge und Waufishert ist mwichtig: $\{1,2,3\} = \{3,1,2\} = \{2,2,1,3,1,1\}$ · Un endlicht Mengen y Eigenschaft, dass {24,6,8,-3:= {neN | n ist gerade} VnelN: $(n \text{ ist gerode} \iff \exists k \in \mathbb{N}: n=2k)$ • Sperifikation durch runeipung: (n in 2k) $\{1, 4, 5, 16, \ldots\} := \{n \text{ in } n \in \mathbb{N}\}$

Bem. Der Unterschied zwischen "I" und ":" ist subtil. Vorest benutzen wir mentens nur "1". Wetere Berppele: · \{x \in \mathbb{Z} \| -1 \in x \in 2\} = \{ -1, 0, 1, 2\} · {xep/x=2} = {-12,12} = {±12} • $\{(x,y)\in\mathbb{R}^2 \mid x^2+y^2=1\}=\{(\cos\varphi, \sin\varphi): \varphi\in[0,2\pi]\}$ · {3 = 0 ist die leer Menge {1,2, {1,2}, N} hat 4 Elemente Mengenberjehmgen A, B beliebige Mengen: Dann steht ASB, fûr Yx: XEA => XEB A ist Teilmonse von B Gleichheit von Mongen A=B (=> (AGB & BGA) Weitere Schreibreisen?

A & B (=> 7 (A < B) A&B A&B A A B "A it edite Teilmeng vm B" Ben: " C" bedentet fast immer " C". Manche Anterer vorwender" (in Analogie zu "<" nd "=")

· We beverst man ASB:
27. Vx EA: XEB (Abh für Vx: XEA => XEB)
Benéssbema
· Sa X & A (beliebig aberfest)
Dann folgt daraus,
· somit int x and in B, also x &B
· In speramt folgt ASB
Tür Mengen gleichheit: Zeise A=(3)
Berseischema: · Zeise ACB:
·zeize A=B: (also BCA)
- Semit ist A=B
Mengenoperationen
Seien A, B Leliebise Mensen
· Vereinizungsmence: AUB:
XEAUR (=) XEAVXEB
· Sanithmense: An B
XE ANB (=) XEN A XEB A B
· Diforenmence: AB
XEANB (3) XEAN XEB
X0 17 18 (2) 1011 11 11 11 19 15

Bemerlung:
$$|A|$$
 bezeichnet die Anzahl de Elemente $vm A(falls, Aendlich sit)$. Dann sett $|A \cup B| = |A| + |B| - |A \cap B|$ $|A \cup B| = |A| - |A \cap B|$ $|A \times B| = |A| - |A \cap B|$ $|A \times B| = |A| - |A \cap B|$ $|P(A)| = 2^{|A|}$ $|$

 $3\dot{M} = \{0_{M}, 1_{M}, 2_{M}\}$ $(n+1)_{M} := \{0_{M}, 1_{M}, \dots, (n-1)_{M}, (n)_{M}\} = (n)_{M} \cup \{(n)_{M}\}$ $Gibtes die Menge \{0_{M}, 1_{M}, 2_{M}, 3_{M}, \dots, 3\} \stackrel{?}{\sim} 3$ Son, das ist om Axiom der Mengenlehre ?FC (Unendlikkalsaxiom),