Kapt. Folgen und Reihen

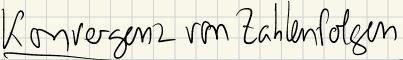
Schreibweisen und Beispiele

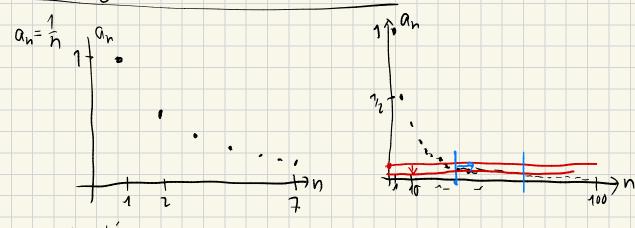
Ema Zahlenfolge ist ein mathematisches Objeh! Eine Zahlenfolge ist eine Funktion a: N -> R mit gegebener Funktionsvorsduff, eine reelle Tahlentolse. Die Funktionswerte der Folge heißen Folgen flieder und worden statt a(n) meintens bereichnet mit an Die Folge selbst wird selten mit a sonden als (an) new hereichnet. Spezifiziert wird eine Funklian, 2B: n Geselsen sei die Funhtimf: R\{03→R mit f(x)=1". Eins Folge wird so spezifiziet:

n Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ mit $a_n=\frac{1}{n}$. $(a_n)_{n\in\mathbb{N}}$ heißt auch harmonische Folge. Man sie and durch $(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{2$

Beispiele: • Die Folge $(a_n)_{n \in \mathbb{N}}$ mit $a_n = \frac{2n+3}{3n-1}$, also $a_1 = \frac{7}{2}$, $a_2 = \frac{7}{5}$, $a_{1000} = \frac{2003}{2999}$, • Die Folge $(a_n)_{n \in \mathbb{N}}$ mit $a_n = (1+\frac{1}{n})$, $a_1 = 2$, $a_2 = \frac{9}{4}$, $a_3 = \frac{64}{27}$, $a_4 = \frac{625}{256}$.

• Die Tolge
$$(a_n)_{n \in \mathbb{N}}$$
 mit $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$ (vehursive Defn)
 $\sum sitt: a_1 = 2$, $a_2 = \frac{1}{2}(2 + \frac{2}{2}) = \frac{3}{2} = 1.5$, $a_3 = \frac{17}{12} = 1.41666...$,
$$a_4 = \frac{577}{408} \approx 1.4142157$$
, ---



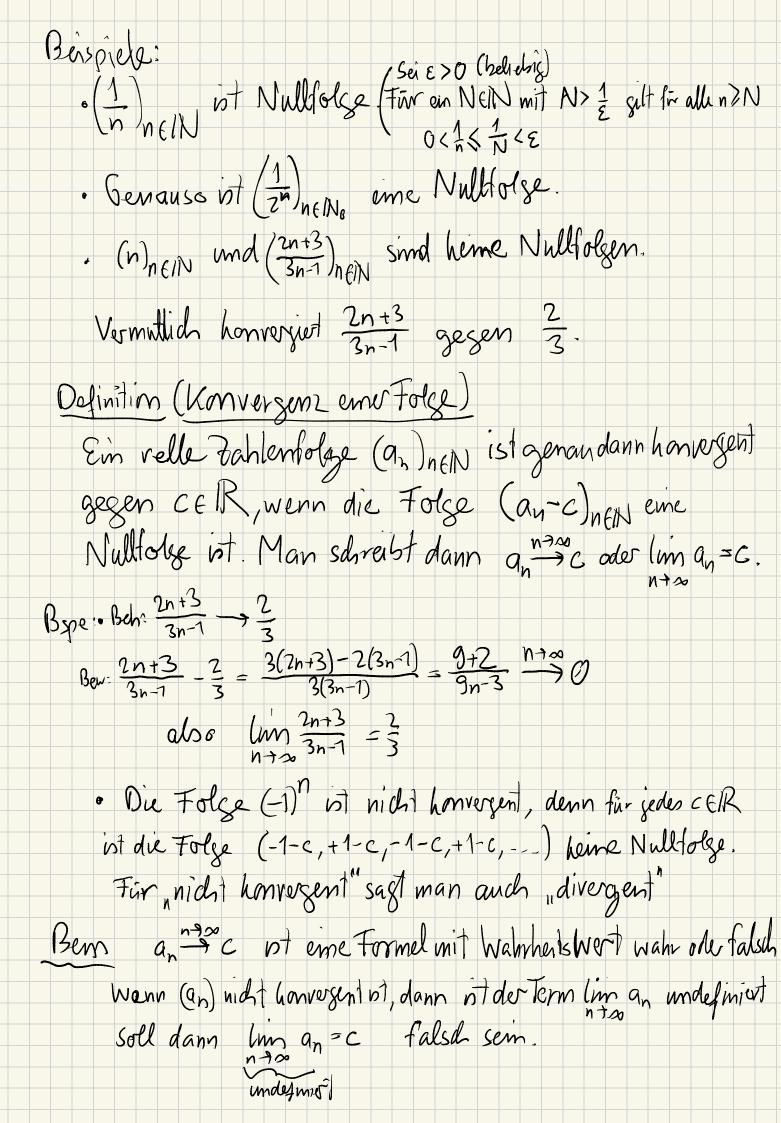


Anshaulid:

u die Folgenslieder an nähern sich belieb is nahe an die Null für immer größere nan

oder undie an strelsen gegen O für in gegen unendlich oder undie Folge (1) nein honvergiert gegen O undie Folge 1 ist eine Nullfolge o

Definition Nullfolge Eme reelle Zahlenfolge (an) nem vit genan dann eine Nullfolge wenn es zu einem beliebigen E>0 ein NEINgibt, so dass für alle n?N gilt - E< an < E



	vahrheits wert von		
<u>Cu</u>	$ m(-1)^n = lm $ $ n \to \infty $	n 2	
N'-	ndel under		
	un bestimmt.		
Für Folgm, die gegeben sind in	, als gelrods	en rationale T	unhtimen um n
geseben sind in	t die Grenzwer	bestimmy emp	ad $(a_p \neq 0, b_g \neq 0, p, g \in \mathbb{N}$
ant an +	- aintag	(O falls	p<9
bgn + bg-1 n - +	-bintho	$\frac{\partial \rho}{\partial \rho}$ falls	p=9
		(±∞ falls	p>9
Sah Grenzwer			
Folgen mit an	→a ER, bn-	+ beR. Dann	sitt
$a_n + b_n \stackrel{n\to\infty}{\longrightarrow} a$			
· weun b + 0, d	$ann \frac{a_n}{b_n} \rightarrow \frac{a_n}{a_n}$	2	
· Werm an > 0,	a>0 oder 6	>0 , dann $(a_n)^{b_n}$	n n n n n n n n n n n n n n n n n n n
Bemerhung: Nicht im	ms anwendbas:	$ \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} \cdot (\frac{1}{\sqrt{N}}) $	1+1n) -> e=2.71.
	+1 +1 h (\n+1 -\n)	$\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}$	1 n-9.50 O
	$\frac{1}{1}(n!)^{4}$ n= $\frac{1}{1}(2n+1)!$	$\stackrel{\infty}{\rightarrow}$ TT (sdn	niers)
(2n)	1 (21171):		

Reihen Gezeben ome Folge von Summanden (an) nEN. Was soll 91+92+93+--- bedeuten? Wir hetratten Teilsummen S1 := Q1 Sz:= 9++02 S3:= Q1+ Q2 + Q3 $S_n := Q_1 + \cdots + Q_n = \sum_{k=1}^n Q_k$ Winn der limes ling sn = : s existiont, so shreibt man md sast, die Reihe Zan ist honversent (gesens) eispiele $\frac{1}{2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1$ all semenes: fin |q|<1 selt $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$. $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$