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Lagrangian fluid mechanics is a way of solving the Navier-Stokes dynamics using a particle-
based discretization of space. Machine Learning approaches to learning Lagrangian fluid me-
chanics are rather in their early stages, and benchmarking the performance of existing neural
networks on such data is what brought the LagrangeBench project to life (Toshev et al., 2023a).
We have already included the graph neural networks from Sanchez-Gonzalez et al. (2020);
Brandstetter et al. (2021); Satorras et al. (2021); Schütt et al. (2021).

In this project, we want to add more machine learning models and benchmark them on the
datasets included within LagrangeBench. We would start by implementing the recent SFBC
model (Winchenbach and Thuerey, 2024) and drawing the connection between its Fourier fea-
tures and the spherical harmonics bases typically used in equivariant machine learning (Toshev
et al., 2023b). Then, the core of this project will be the reimplementation of the recent invari-
ant feature-based model Ponita (Bekkers et al., 2023) in LagrangeBench. This model promises
same expressive power and significant speedups compared to Clebsch-Gordan tensor product-
based GNNs like SEGNN (Brandstetter et al., 2021). Related papers that would be helpful in
the initial phase of the project and give more context are Sanchez-Gonzalez et al. (2020);
Battaglia et al. (2016); Mrowca et al. (2018); Li and Farimani (2022); Toshev et al. (2023b).

Figure 1: 2D and 3D lid-driven cavity simulation.

Milestones

• Reimplementing the two mentioned models in JAX and validating the code by reproducing
one of the results from their respective reference papers.

• Integrating these models into LagrangeBench and benchmarking them.

Requirements

• Experience with Python, specifically JAX.
• Some knowledge of machine learning. GNNs or the specific models of interest are a plus.
• Ability to work independently.

Contact

Artur Toshev artur.toshev@tum.de

https://github.com/tumaer/lagrangebench
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