Preparatory Courses for Students with Vocational Qualifications
Studying without A-Levels / Abitur: The TUM School of Computation, Information and Technology offers a preparatory course for students with vocational qualifications (as defined in §88(6) BayHIG) in order to be eligible for university admission.
You have vocational qualifications and would like to be eligible for subject-specific university admission? Then you will have to prove your knowledge of mathematics at TUM by taking a written exam. We support you in preparing for the exam – with a free course and a tutorial on a voluntary basis.
Current information
The next preparation course will take place in summer 2024. It will be similar to last year's, hence the following information for reference.
Lecture
Date:
Monday to Friday,
July 24 to 28, 2023
Time:
9:00 to 12:00 with breaks
Place: Room MI 00.09.022
Tutorial
Date:
Monday to Thursday,
July 24 to 27, 2023
Time:
13:30 to 15:30
Place: Room MI 00.09.022
Mathematics Exam
Date:
Friday, August 28, 2023
Time:
13:00
Duration: 180 minutes
Place: Room MI 00.09.022
Mathematics exam for university admission
The mathematics admission exam is obligatory to qualify for subject-specific university admissions and is a written test.
Registration
Please register via email to Prof. Dr. Johann Hartl: hartl(at)ma.tum.de
Permitted aids
During the exam, you are permitted to use a formula collection booklet of your choice and all your course documents, such as scripts and exercise papers with the sample solutions.
Preparatory course
The preparatory course for vocationally qualified applicants lasts a week (5 workdays). It includes a lecture and a tutorial. In addition, you will be given exercises to solve on your own.
Please note: The teaching language is German.
Content of the course
- Numbers and quantities
- Graphs
- Vectors
- Analytical geometry
- Real functions
- Limits and continuity
- Basics of differential and integral calculations
If you want to prepare for the course, you can, for example, look at one of the following books:
- Wilfried Scharlau: Schulwissen Mathematik
Various editions published by different publishers. - Jan van de Craats, Rob Bosch: Grundwissen Mathematik
Ein Vorkurs für Fachhochschule und Universität
Heidelberg: Springer-Verlag 2010, 324 Seiten, 19.95 EUR
ISBN 978-3-642-13500-2
All textbooks for the upper level of the Gymnasium (secondary level = grades 11 to 13 (in case of G9) or grades 11 to 12 (in case of G8)) are suitable – even older ones, they do not have to be the latest.
12./13. Schuljahr
Friedrich Barth, Gert Krumbacher:
Analysis anschaulich 1.
Schülerbuch, 240 Seiten, ISBN 978-3-637-11401-2, Bestell-Nr. 11401-2, Preis 24.95 €.
Inhalt:
1. Funktion und Graph / 2. Polynomfunktion / 3. Ableitung der Polynomfunktion / 4. Anwendungen / 5. Scharen / 6. Technik des Ableitens / 7. Stetigkeit und Grenzwert / 8. Differenzierbarkeit
12./13. Schuljahr
Marianne Baierlein, Friedrich Barth, Ulrich Greifenegger, Gert Krumbacher:
Anschauliche Analysis 2 – Grundkurs.
Schülerbuch, 168 Seiten, ISBN 978-3-637-02291-1, Best.-Nr. 02291-1, 25.95 €.
Inhalt:
1. Stammfunktion und unbestimmtes Integral / 2. Das bestimmte Integral bei positiven Funktionen / 3. Das bestimmte Integral, die Integralfunktion / 4. Die Exponentialfunktion / 5. Die Ableitung der Umkehrfunktion / 6. Die Logarithmusfunktion / 7. Rationale Funktionen
Elisabeth Barth, Friedrich Barth, Gert Krumbacher:
Anschauliche Analytische Geometrie.
Schülerbuch, 304 Seiten, ISBN 978-3-637-03500-3, Best.-Nr. 03500-3, 28.95 €.
Inhalt:
1. Was ist Analytische Geometrie? / 2. Lineare Gleichungssysteme / 3. Punkte und Vektoren im Raum / 4. Elementare Vektorrechnung / 5. Lineare Abhängigkeit / 6. Der abstrakte Vektorraum / 7. Geraden im Raum / 8. Ebenen / 9. Skalarprodukt / 10. Vektorprodukt / 11. Normalformen / 12. Kugel
Formel-Sammlungen
Friedrich Barth, Paul Mühlbauer, Friedrich Nikol, Karl Wörle:
Mathematische Formeln und Definitionen.
118 Seiten, ISBN 978-3-7627-3272-3, Best.-Nr. 3272-3, 11.50 €.
Inhalt:
Grundbegriffe – Algebra – Geometrie – Analysis - Komplexe Zahlen – Vektoren – Analytische Geometrie im R² – Analytische Geometrie im R³ – Abbildungen im R² – Inzidenzgeometrie – Aus-sagenalgebra – Stochastik